Классификация по строению углеродной цепи. Классификация органических соединений по строению углеродного скелета. Классификация органических соединений по функциональным группам Классификация органических веществ по природе функциональных групп

Классификация органических веществ

В зависимости от типа строения углеродной цепи органические вещества подразделяют на:

  • ациклические и циклические.
  • предельные (насыщенные) и непредельные (ненасыщенные).
  • карбоциклические и гетероциклические.
  • алициклические и ароматические.

Ациклические соединения — органические соединения, в молекулах которых отсутствуют циклы и все атомы углерода соединены друг с другом в прямые или разветвленные открытые цепи.

В свою очередь среди ациклических соединений выделяют предельные (или насыщенные), которые содержат в углеродном скелете только одинарные углерод-углеродные (С-С) связи и непредельные (или ненасыщенные), содержащие кратные — двойные (С=С) или тройные (С≡С) связи.

Циклические соединения - химические соединения, в которых присутствует три или более связанных атомов, образующие кольцо.

В зависимости от того, какими атомами образованы циклы различают карбоциклические соединения и гетероциклические соединения.

Карбоциклические соединения (или изоциклические) содержат в своих циклах только атомы углерода. Эти соединения в свою очередь делятся на алициклические соединения (алифатические циклические) и ароматические соединения.

Гетероциклические соединения содержат в составе углеводородного цикла один или несколько гетероатомов, чаще всего которыми являются атомы кислорода, азота или серы.

Простейшим классом органических веществ являются углеводороды – соединения, которые образованы исключительно атомами углерода и водорода, т.е. формально не имеют функциональных групп.

Поскольку углеводороды, не имеют функциональных групп для них возможна только классификация по типу углеродного скелета. Углеводороды в зависимости от типа их углеродного скелета делят на подклассы:

1) Предельные ациклические углеводороды носят название алканы. Общая молекулярная формула алканов записывается как C n H 2n+2 , где n — количество атомов углерода в молекуле углеводорода. Данные соединения не имеют межклассовых изомеров.

2) Ациклические непредельные углеводороды делятся на:

а) алкены — в них присутствует только одна кратная, а именно одна двойная C=C связь, общая формула алкенов C n H 2n ,

б) алкины – в молекулах алкинов также присутствует только одна кратная, а именно тройная С≡С связь. Общая молекулярная формула алкинов C n H 2n-2

в) алкадиены – в молекулах алкадиенов присутствуют две двойные С=С связи. Общая молекулярная формула алкадиенов C n H 2n-2

3) Циклические предельные углеводороды называются циклоалканы и имеют общую молекулярную формулу C n H 2n .

Остальные органические вещества в органической химии рассматривают как производные углеводородов, образуемые при введении в молекулы углеводородов так называемых функциональных групп, которые содержат другие химические элементы.

Таким образом, формулу соединений с одной функциональной группой можно записать как R-X, где R – углеводородный радикал, а Х – функциональная группа. Углеводородным радикалом называют фрагмент молекулы какого-либо углеводорода без одного или нескольких атомов водорода.

По наличию тех или иных функциональных групп соединения подразделяют на классы. Основные функциональные группы и классы соединений, в состав которых они входят, представлены в таблице:

Таким образом, различные комбинации типов углеродных скелетов с разными функциональными группами дают большое разнообразие вариантов органических соединений.

Галогенпроизводные углеводородов

Галогенпроизводными углеводородов называют соединения, получаемые при замене одного или нескольких атомов водорода в молекуле какого-либо исходного углеводорода на один или несколько атомов какого-либо галогена соответственно.

Пусть некоторый углеводород имеет формулу C n H m , тогда при замене в его молекуле X атомов водорода на X атомов галогена формула галогенпроизводного будет иметь вид C n H m- X Hal X . Таким образом, монохлорпроизводные алканов имеют формулу C n H 2n+1 Cl , дихлорпроизводные C n H 2n Cl 2 и т.д.

Спирты и фенолы

Спирты – производные углеводородов, один или несколько атомов водорода в которых заменены на гидроксильную группу -OH. Спирты с одной гидроксильной группой называют одноатомными, с двумя – двухатомными , с тремя трехатомными и т.д. Например:

Спирты с двумя и более гидроксильными группами называют также многоатомными спиртами. Общая формула предельных одноатомных спиртов C n H 2n+1 OH или C n H 2n+2 O. Общая формула предельных многоатомных спиртов C n H 2n+2 O x , где x – атомность спирта.

Спирты могут быть и ароматическими. Например:

бензиловый спирт

Общая формула таких одноатомных ароматических спиртов C n H 2n-6 O.

Однако, следует четко понимать, что производные ароматических углеводородов, в которых на гидроксильные группы заменены один или несколько атомов водорода при ароматическом ядре не относятся к спиртам. Их относят к классу фенолы . Например, это данное соединение является спиртом:

А это представляет собой фенол:

Причина, по которой фенолы не относят к спиртам, кроется в их специфических химических свойствах, сильно отличающих их от спиртов. Как легко заметить, однотомные фенолы изомерны одноатомным ароматическим спиртам, т.е. тоже имеют общую молекулярную формулу C n H 2n-6 O.

Амины

Аминами называют производные аммиака, в которых один, два или все три атома водорода замещены на углеводородный радикал.

Амины, в которых только один атом водорода замещен на углеводородный радикал, т.е. имеющие общую формулу R-NH 2 , называют первичными аминами .

Амины, в которых два атома водорода замещены на углеводородные радикалы, называют вторичными аминами . Формулу вторичного амина можно записать как R-NH-R’. При этом радикалы R и R’ могут быть как одинаковые, так и разные. Например:

Если в аминах отсутствуют атомы водорода при атоме азота, т.е. все три атома водорода молекулы аммиака замещены на углеводородный радикал, то такие амины называют третичными аминами . В общем виде формулу третичного амина можно записать как:

При этом радикалы R, R’, R’’ могут быть как полностью одинаковыми, так и все три разные.

Общая молекулярная формула первичных, вторичных и третичных предельных аминов имеет вид C n H 2 n +3 N.

Ароматические амины с только одним непредельным заместителем имеют общую формулу C n H 2 n -5 N

Альдегиды и кетоны

Альдегидами называют производные углеводородов, у которых при первичном атоме углерода два атома водорода заменены на один атом кислорода, т.е. производные углеводородов в структуре которых имеется альдегидная группа –СН=О. Общую формулу альдегидов можно записать как R-CH=O. Например:

Кетонами называют производные углеводородов, у которых при вторичном атоме углерода два атома водорода заменены на атом кислорода, т.е. соединения, в структуре которых есть карбонильная группа –C(O)-.

Общая формула кетонов может быть записана как R-C(O)-R’. При этом радикалы R, R’ могут быть как одинаковыми, так и разными.

Например:

пропанон бутанон

Как можно заметить, альдегиды и кетоны весьма схожи по строению, однако их все-таки их различают как классы, поскольку они имеют существенные различия в химических свойствах.

Общая молекулярная формула предельных кетонов и альдегидов одинакова и имеет вид C n H 2 n O

Карбоновые кислоты

Карбоновыми кислотами называют производные углеводородов, в которых есть карбоксильная группа –COOH.

Если кислота имеет две карбоксильные группы, такую кислоту называют дикарбоновой кислотой .

Предельные монокарбоновые кислоты (с одной группой -COOH) имеют общую молекулярную формулу вида C n H 2 n O 2

Ароматические монокарбоновые кислоты имеют общую формулу C n H 2 n -8 O 2

Простые эфиры

Простые эфиры – органические соединения, в которых два углеводородных радикала опосредованно соединены через атом кислорода, т.е. имеют формулу вида R-O-R’. При этом радикалы R и R’ могут быть как одинаковыми, так и разными.

Например:

Общая формула предельных простых эфиров такая же, как у предельных одноатомных спиртов, т.е. C n H 2 n +1 OH или C n H 2 n +2 О.

Сложные эфиры

Сложные эфиры – класс соединений на основе органических карбоновых кислот, у которых атом водорода в гидроксильной группе замещен на углеводородный радикал R. Фомулу сложных эфиров в общем виде можно записать как:

Например:

Нитросоединения

Нитросоединения – производные углеводородов, у которых один или несколько атомов водорода заменены на нитрогруппу –NO 2 .

Предельные нитросоединения с одной нитрогруппой имеют общую молекулярную формулу C n H 2 n +1 NO 2

Аминокислоты

Соединения, имеющие в своей структуре одновременно две функциональные группы – амино NH 2 и карбоксильную – COOH. Например,

NH 2 -CH 2 -COOH

Предельные аминокислоты с одной карбоксильной и одной аминогруппой изомерны соответствующим предельными нитросоединениям т.е. как и они имеют общую молекулярную формулу C n H 2 n +1 NO 2

В заданиях ЕГЭ на классификацию органических веществ важно уметь записывать общие молекулярные формулы гомологических рядов разных типов соединений, зная особенности строения углеродного скелета и наличия тех или иных функциональных групп. Для того, чтобы научиться определять общие молекулярные формулы органических соединений разных классов, будет полезен материал по этой теме .

Номенклатура органических соединений

Особенности строения и химических свойств соединений находят отражение в номенклатуре. Основными типами номенклатуры считаются систематическая и тривиальная .

Систематическая номенклатура фактически прописывает алгоритмы, в соответствии с которыми то или иное название составляется в строгом соответствии с особенностями строения молекулы органического вещества или, грубо говоря, его структурной формулы.

Рассмотрим правила составления названий органических соединений по систематической номенклатуре.

При составлении названий органических веществ по систематической номенклатуре наиболее важным является правильно определить число атомов углерода в наиболее длинной углеродной цепи или посчитать число атомов углерода в цикле.

В зависимости от количества атомов углерода в основной углеродной цепи, соединения, будут иметь в своем названии различный корень:

Количество атомов С в главной углеродной цепи

Корень названия

проп-

пент-

гекс-

гепт-

дек(ц)-

Вторая важная составляющая, учитываемая при составлении названий, — наличие/отсутствие кратных связей или функциональной группы, которые перечислены в таблице выше.

Попробуем дать название веществу, имеющему структурную формулу:

1. В главной (и единственной) углеродной цепи данной молекулы содержится 4 атома углерода, поэтому название будет содержать корень бут-;

2. В углеродном скелете отсутствуют кратные связи, следовательно, суффикс, который нужно использовать после корня слова будет -ан, как и у соответствующих предельных ациклических углеводородов (алканов);

3. Наличие функциональной группы –OH при условии, что нет более старших функциональных групп добавляет после корня и суффикса из п.2. еще один суффикс – «ол»;

4. В молекулах содержащих кратные связи или функциональные группы, нумерация атомов углерода главной цепи начинается с той стороны молекулы, к которой они ближе.

Рассмотрим еще один пример:

Наличие в главной углеродной цепи четырех атомов углерода говорит нам о том, что основой названия является корень «бут-», а отсутствие кратных связей говорит о суффиксе «-ан», который будет следовать сразу после корня. Старшая группа в данном соединении – карбоксильная, она и определяет принадлежность этого вещества к классу карбоновых кислот. Следовательно, окончание у названия будет «-овая кислота». При втором атоме углерода находится аминогруппа NH 2 — , поэтому данное вещество относится к аминокислотам. Также при третьем атоме углерода мы видим углеводородный радикал метил (CH 3 — ). Поэтому по систематической номенклатуре данное соединение называется 2-амино-3-метилбутановая кислота.

Тривиальная номенклатура, в отличие от систематической, как правило, не имеет связи со строением вещества, а обусловлена по большей части его происхождением, а также химическими или физическими свойствами.

Формула Название по систематической номенклатуре Тривиальное название
Углеводороды
CH 4 метан болотный газ
CH 2 =CH 2 этен этилен
CH 2 =CH-CH 3 пропен пропилен
CH≡CH этин ацетилен
CH 2 =CH-CH= CH 2 бутадиен-1,3 дивинил
2-метилбутадиен-1,3 изопрен
метилбензол толуол
1,2-диметилбензол орто -ксилол
(о -ксилол)
1,3-диметилбензол мета -ксилол
(м -ксилол)
1,4-диметилбензол пара -ксилол
(п -ксилол)
винилбензол стирол
Спирты
CH 3 OH метанол метиловый спирт,
древесный спирт
CH 3 CH 2 OH этанол этиловый спирт
CH 2 =CH-CH 2 -OH пропен-2-ол-1 аллиловый спирт
этандиол-1,2 этиленгликоль
пропантриол-1,2,3 глицерин
фенол
(гидроксибензол)
карболовая кислота
1-гидрокси-2-метилбензол орто -крезол
-крезол)
1-гидрокси-3-метилбензол мета -крезол
-крезол)
1-гидрокси-4-метилбензол пара -крезол
(п -крезол)
фенилметанол бензиловый спирт
Альдегиды и кетоны
метаналь формальдегид
этаналь уксусный альдегид, ацетальдегид
пропеналь акриловый альдегид, акролеин
бензальдегид бензойный альдегид
пропанон ацетон
Карбоновые кислоты
(HCOOH) метановая кислота муравьиная кислота
(соли и сложные эфиры — формиаты)
(CH 3 COOH) этановая кислота уксусная кислота

(соли и сложные эфиры — ацетаты)

(CH 3 CH 2 COOH) пропановая кислота пропионовая кислота
(соли и сложные эфиры — пропионаты)
C 15 H 31 COOH гексадекановая кислота пальмитиновая кислота
(соли и сложные эфиры — пальмитаты)
C 17 H 35 COOH октадекановая кислота стеариновая кислота
(соли и сложные эфиры — стеараты)
пропеновая кислота акриловая кислота
(соли и сложные эфиры — акрилаты)
HOOC-COOH этандиовая кислота щавелевая кислота
(соли и сложные эфиры — оксалаты)
1,4-бензолдикарбоновая кислота терефталевая кислота
Сложные эфиры
HCOOCH 3 метилметаноат метилформиат,
метиловый эфир мурвьиной кислоты
CH 3 COOCH 3 метилэтаноат метилацетат,
метиловый эфир уксусной кислоты
CH 3 COOC 2 H 5 этилэтаноат этилацетат,
этиловый эфир уксусной кислоты
CH 2 =CH-COOCH 3 метилпропеноат метилакрилат,
метиловый эфир акриловый кислоты
Азотсодержащие соединения
аминобензол,
фениламин
анилин
NH 2 -CH 2 -COOH аминоэтановая кислота глицин,
аминоуксусная кислота
2-аминопропионовая кислота аланин

КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Каждый период развития органической химии отмечен попытками ученых каким-то образом привести разнообразие химических соединений в единую систему.

Важнейшими признаками, которые положены в основу современной классификации органических соединений, являются строение углеродной цепи и природа функциональных групп.

Классификация по строению углеродной цепи

В зависимости от расположения углеродных атомов в молекуле органические соединения делят на несколько больших групп.

Различают два типа органических соединений: ациклические и циклические. Ациклические или алифатические (отдревнегреч. алифар– жир) – вешества с открытой (незамкнутой) цепью, другое их название – соединения жирного ряда. По строению углеводородной цепи среди ациклических соединений различают; насыщенные (предельные) вешества, содержащие только простые углерод-углеродные связи и ненасыщенные (непредельные) алифатические – структуры с кратными (двойными,тройными) углерод-углеродными связями.

К циклическим относятся соединения, содержащие в своей структуре замкнутые цепи атомов – циклы (от греч. циклос – круг). Природа атомов, входящих в цикл, лежит в основе деления всех циклических соединений на две большие группы: карбоци клические и гетеро циклические. В молекулах карбоциклических соединений цикл состоит только из атомов углерода. Гетероциклические соединения имеют в своей структуре циклы, содержащие наряду с атомами углерода атомы других элементов, чаще всего О, S, N.

Карбоциклические соединения в свою очередь делятся на алициклические и ароматические,

Алициклические структуры подобно алифатическим соединениям по степени насыщенности подразделяются на насыщенные и ненасыщенные:

Среди гетероциклических соединений различают насыщенные, ненасыщенные и ароматические структуры:

Соединения, молекулы которых состоят только из атомов углерода и водорода, называются углеводородами. Замещение одного или нескольких атомов водорода на функциональные группы ведет к образованию других классов органических соединений.

Классификация по природе функциональной группы

Функциональная группа – структурный фрагмент молекулы, характеризующий свойства соединений данного класса. Например, свойства карбоновых кислот характеризуются наличием карбоксильной группы -СООН; в спиртах функциональная группа – спиртовый гидроксил –ОН; к аминам относятся соединения, содержащие группу -NH 2 и т. д.

По количеству и однородности функциональных групп органические соединения делят на моно-, поли- и гетерофункциональные.

Вещества с одной функциональной группой называют монофункциональными, с несколькими одинаковыми функциональными группами – полифункциональными. Соединения, содержащие несколько различных функциональных групп, – гетерофункциональные.

Соединения одного класса объединены в гомологические ряды. Гомологический ряд – это ряд органических соединений с одинаковыми функциональными группами и однотипным строением, каждый представитель гомологического ряда отличается от предыдущего на постоянную единицу (–СН 2 –), которую называют гомологической раз ностью. Члены гомологического ряда называются гомологами.


НОМЕНКЛАТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИИ

Химическая номенклатура – совокупность названий индивидуальных химических веществ, их групп и классов, а также правила составления их названий.

Соблюдать соответствия между существующей классификацией веществ и их наименованиями позволяют номенклатурные системы.

Номенклатура органических соединений складывалась на протяжении всего периода возникновения и становления органической химии как науки. Для названий органических соединений применяют несколько номенклатурных систем: тривиальную, рациональную, международную (ИЮПАК),

Тривиальная номенклатура

На первых этапах развития органической химии соединения назывались случайно. Это было связано с их нахождением в природе; щавелевая кислота, яблочная кислота и другие, или с источником их получения: древесный спирт, муравьиная кислота и др. Многие тривиальные названия прочно укоренились и до сих пор широко применяются.

Рациональная номенклатура

В основе рациональной номенклатуры используется принцип деления органических соединений на гомологические ряды. Вещества рассматриваются как производные простейшего представителя данного ряда: для алканов -- метана, алкенов – этилена, алкинов – ацетилена и т. д., например:

В настоящее время применение рациональной номенклатуры ограничено. Основные ее принципы нашли свое отображение в радикало-функциональной номенклатуре.

Международная номенклатура (ИЮПАК)

Первая попытка создать номенклатурную систему, которая позволяла бы дать однозначное название любому органическому соединению, была предпринята химиками в 1892 году на международном конгрессе в Женеве (женевская номенклатура). Правила современной номенклатуры были разработаны на XIX конгрессе Международной: союза теоретической и прикладной химии в 1957 году. Эти правила известны под названием номенклатуры ИЮПАК.

Номенклатурные правила ИЮПАК предусматривают несколько способов образования названий органических соединений. Наиболее широко применяются заместительная и радикало-функииональная номенклатуры.

Заместительная номенклатура

Прежде чем перейти к рассмотрению заместительной номенклатуры, дадим определение основным понятиям.

Родоначальная структура – структурный фрагмент молекулы (молекулярный остов), лежащий в основе названия соединения: главная углеродная цепь атомов для ациклических соединений, для карбо- и гетероциклических – цикл:

Родоначальное название может быть систематическим, тривиальным или полусистематическим.

В органической химии для sp3-гибрилизованного углерода существует такое понятие, как первичный, вторичный, третичный.

Атом углерода, связанный σ-связью только с одним атомом углерода, называется первичным, с двумя – вторичным, стремя – третичным.

Радикал – остаток углеводорода, образующийся в результате удаления одного или нескольких атомов водорода. Свободную валентность в радикалах обозначают черточкой.

По количеству свободных валентностей различают одно-, двух-, трехвалентные радикалы:

В зависимости оттого, у какого атома углерода находится свободная валентность, различают первичные, вторичные и третичные радикалы:

Заместителем называют любой атом или группу атомов, включая радикал и функциональную группу, которые не входят в родоначальную структуру.

Положение заместителей в молекуле указывают с помощью цифр или букв, которые называют локантами. Для обозначения нескольких одинаковых заместителей или кратных связей в данной молекуле применяют множительные (умножающие) приставки: ди- (два), три- (три), тетра- (четыре), пента- (пять) и т д.

Согласно заместительной номенклатуре органические соединения рассматривают как производные углеводородов, в молекулах которых один или несколько атомов водорода замешены на другие атомы или атомные группы.

Составление названий проводят в определенном порядке:

1. Среди всех функциональных групп, имеющихся в соединении, выбирают старшую. Следующие группы перечисляют в порядке уменьшения их старшинства:

В названии органического вещества лишь старшая функциональная группа обозначается в суффиксе, все остальные – в префиксе, но некоторые функциональные группы всегда находят свое отражение в префиксе:

Их не рассматривают по старшинству.

2. Устанавливают родоначальную структуру. Если соединение содержит кратные связи, то они должны войти в родоначальную структуру,

3. Проводят нумерацию атомов родоначальной структуры таким образом, чтобы старшая функциональная группа получила по возможности меньший номер,

4. Составляют название соединения в целом: первым указывают в алфавитном порядке функциональные группы (кроме старшей) и углеводородные радикалы в префиксе, затем – название родоначальной структуры в корне и в конце названия – старшую функциональную группу в суффиксе.

Степень насыщенности обозначается специальными суффиксами: -ан – для насыщенных, -ен – для двойной, -ин – для тройной связи.

Локанты, буквенные или цифровые, и множительные приставки располагают перед названием заместителей или кратных связей.

Пример составления названий:


Радикало-функцыональнан номенклатура

В основе радикало-функииональной номенклатуры лежит название класса (спирт, кетон и др), перед которым перечисляют названия радикалов и функциональных групп (кроме старшей), например:

Родоначальную структуру чаще обозначают с помощью тривиального названия, а положение радикалов – с помощью буквенных локантов; α, β, γ, δ (греческий алфавит). Буквой α обозначают ближайший к старшей функциональной группе атом углерода.

В дальнейшем при изучении различных классов органических соединений мы расширим приведенные краткие пояснения на многочисленных примерах.


2. ХИМИЧЕСКАЯ СВЯЗЬ. ВЗАИМНОЕ ВЛИЯНИЕ АТОМОВ В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ

Остановимся на одном из важнейших вопросов химии, как осуществляется связь атомов в молекулах? Используя знания, полученные в курсе неорганической химии, рассмотрим вопросы природы химической связи между атомами или типы химических связей.

Современная теория химической связи базируется на квантово-механических представлениях о строении молекулы. предложили в 1916 г. немецкий ученый В. Косселъ и американский ученый Дж. Н.Льюис, Авторы электронной теории выдвинули идею о том, что химическая связь – результат взаимодействия внешних электронных оболочек атомов. Согласно электронной теории химической связи, образуя химическую связь, каждый атом стремится заполнить внешнюю электронную оболочку до конфигурации, присущей инертным газам. При этом он принимает участие в образовании общей электронной пары, отдает или принимает электроны. Принцип заполнения валентных оболочек до конфигурации инертных газов получил название октетное правило.

Особенности органических реакций

Реакции органических соединений в принципе подчиняются тем же законам, что и реакции неорганических веществ, хотя и имеют некоторые специфические особенности.

В неорганических реакциях обычно участвуют ионы; реакции протекают быстро (10?10 - 10?7 с) при достаточно низких температурах. В реакциях органических соединений участвуют молекулы, при этом разрываются одни малополярные ковалентные связи и образуются другие. Органические реакции протекают медленнее ионных , часто для их осуществления необходимы повышенные температуры, давление, катализаторы.

Органические реакции редко приводят к высокому выходу продукта . Наличие в молекуле нескольких идентичных или близких по энергии связей приводит к тому, что реакции происходят одновременно по нескольким направлениям. Это обстоятельство определяет способ записи органических реакций: как правило, используют не химические уравнения, а схемы реакций, в которых обычно не приводятся стехиометрические отношения:

Любая химическая реакция сопровождается разрывом одних связей между атомами и образованием других. Разрыв ковалентных связей может осуществляться следующими способами:

а) гомолитический разрыв - при этом пара электронов делится таким образом, что каждая из образующихся частиц получает по одному электрону:

R: X > R· + ·X

Нейтральный атом или частица с неспаренным электроном называется свободным радикалом , а реакции с их участием - радикальными .

б) гетеролитический разрыв - при этом оба электрона связи остаются с одной из ранее связанных частиц:

R3C: X R3C: + BX

R3C: X R3C+ + AX

в этом случае образуется карбкатион .

Реакции, идущие с гетеролитическим разрывом ковалентных связей, относят к ионным реакциям .

Разрыв химической связи происходит при нагревании, облучении, а чаще при действии на молекулу вещества активной частицы - реагента. Активная частица может быть ионом, нейтральной молекулой или радикалом.

Если реагент - отрицательный ион (OH?, Cl?) или нейтральная молекула с неподеленной электронной парой (:NH3, H2O:), то его называют нуклеофильным , т.е. обладающим сродством к ядру. Реакции с участием таких реагентов называют нуклеофильными .

Если реагент - положительный ион (H+, Cl+, NO2+, H3C+), готовый принять неподеленную пару электронов для образования новой связи, то его называют электрофильным , а реакции с участием таких реагентов - электрофильными .

Классификация органических веществ

Основными структурными признаками, положенными в основу классификации органических соединений, являются углеродный скелет и функциональная группа.

Классификация по типу углеродного скелета

В зависимости от строения углеродного скелета органические соединения разделяют на ациклические - соединения с открытой (незамкнутой) углеродной цепью и циклические .

Ациклические соединения могут быть как насыщенными (алканы), так и ненасыщенными (алкены, алкины).

Циклические соединения - соединения с замкнутой цепью - в зависимости от природы атомов, составляющих цикл, делят на карбоциклические и гетероциклические . Карбоциклические соединения содержат в цикле только атомы углерода и делятся на две существенно различающиеся по химическим свойствам группы: алифатические циклические (сокращенно алициклические) и ароматические . Гетероциклические соединения содержат в цикле, кроме атомов углерода, один или несколько атомов других элементов - гетероатомов.

Классификация по типу функциональной группы

В большинстве органических соединений, кроме атомов углерода и водорода, содержатся атомы других элементов (не входящие в скелет). Эти атомы или их группировки, во многом определяющие физические и химические свойства органических соединений, называют функциональными группами .

Функциональная группа оказывается окончательным признаком, по которому соединения относятся к тому или иному классу. Важнейшие группы приведены в табл. 1.1.

Соединения, имеющие одинаковые функциональные группы, но различающиеся числом атомов углерода, обладают похожими физическими и химическими свойствами. Такие соединения называются гомологами . Совокупность всех гомологов образует гомологический ряд.

Таблица 1.1. Важнейшие функциональные группы

Номенклатура органических соединений

Современная номенклатура (система присвоения названий) должна быть систематической и международной, чтобы специалисты всего мира могли отобразить в названии структуру соединения и, наоборот, по названию однозначно представить структуру. В настоящее время в органической химии используется систематическая номенклатура ИЮПАК (IUPAC ? Международный союз теоретической и прикладной химии).

В основу названия соединения по этой номенклатуре положена углеродная цепь молекулы, содержащая максимальное число функциональных групп и кратных связей. Начало нумерации цепи определяет наиболее старшая функциональная группа. Порядок старшинства основных функциональных групп следующий:

COOH > ?C?N > ?CHO > >C=O > ?OH > ?NH2 > ?NO2 > Hal

Органические соединения наиболее часто классифицируются по двум критериям - по строению углеродного скелета молекулы или по наличию в молекуле органического соединения функциональной группы.

Классификацию органических молекул по строению углеродного скелета можно представить в виде схемы:

Ациклические соединения – это соединения с незамкнутой углеродной цепью. Их основу составляют алифатические соединения (от греческого aleiphatos масло, жир, смола) – углеводороды и их производные, углеродные атомы которых связаны между собой в открытые неразветвленные или разветвленные цепи.

Циклические соединения – это соединения, содержащие замкнутую цепь. Карбоциклические соединения в составе цикла содержат только атомы углерода, гетероциклические в составе цикла, кроме атомов углерода, содержат один или несколько гетероатомов (атомы N,O,S и др.).

В зависимости от природы функциональной группы производные углеводородов делят на классы органических соединений. Функциональная группа – это атом или группа атомов, как правило, неуглеводородного характера, которые определяют типичные химические свойства соединения и его принадлежность к определенному классу органических соединений. В качестве функциональной группы у ненасыщенных молекул выступают двойные или тройные связи.

Название функциональной группы

Название класса соединений

Общая формула класса

Карбоксильная -COOH

Карбоновые кислоты

Сульфоновая -SO 3 H

Сульфокислоты

Оксогруппа (карбонильная)

Альдегиды

Оксогруппа (карбонильная)

Гидроксильная -OH

Тиольная (меркапто) -SH

Тиолы (меркаптаны)

F, -Cl, -Br, -I

Галогенпроизводные

Алкоксильная - OR

Простые эфиры

Алкилтиольная -SR

Тиоэфиры

Нитросоединения

Алкосикарбонильная

Сложные эфиры

Амино -NH 2

RNH 2 ,R 1 NHR 2, R 1 R 2 R 3 N

Карбоксамидная

2.2 Принципы химической номенклатуры – систематическая номенклатура июпак. Заместительная и радикально-функциональная номенклатура

Номенклатура – это система правил, позволяющая дать однозначное название соединению. В основе заместительной номенклатуры лежит выбор родоначальной структуры. Название строится как сложное слово, состоящее из корня (название родоначальной структуры), суффиксов, отражающих степень ненасыщенности, приставок и окончаний, указывающих характер, число и положение заместителей.

Родоначальная структура (родовой гидрид) – это неразветвленное ациклическое или циклическое соединение, в структуре которого к атомам углерода или других элементов присоединены только атомы водорода.

Заместитель – это функциональная (характеристическая) группа или углеводородный радикал, связанный с родоначальной структурой.

Характеристическая группа – это функциональная группа, связанная с родоначальной структурой или частично входящая в ее состав.

Главная группа – характеристическая группа, вводимая при формировании названий в виде окончания в конце названия при образовании названий с помощью функциональных групп.

Заместители, связанные с родоначальной структурой, делятся на два типа. Заместители 1-го типа - углеводородные радикалы и неуглеводородные характеристические группы, указываемые в названии только в приставках.

Заместители 2-го типа - характеристические группы, указываемые в названии в зависимости от старшинства либо в приставке, либо в окончании. В приведенной ниже таблице старшинство заместителей убывает сверху вниз.

Функциональная группа

Окончание

Карбоновая кислота

карбокси

Карбоновая кислота

овая кислота

Сульфоновые кислоты

сульфокислота

карбонитрил

Альдегиды

карбальдегид

Гидрокси

Меркапто

*- Атом углерода функциональной группы входит в состав родоначальной структуры.

Составление названия органического соединения производится в определенной последовательности.

    Определяют главную характеристическую группу, если она присутствует. Главная группа вводится в виде окончания в название соединения.

    Определяют родоначальную структуру соединения. За родоначальную структуру принимают, как правило, цикл в карбоциклических и гетероциклических соединениях или главную углеродную цепь в ациклических соединениях. Главную углеродную цепь выбирают с учетом следующих критериев: 1) максимальное число характеристических групп 2-го типа, обозначаемых как префиксами, так и суффиксами; 2) максимальное число кратных связей; 3) максимальная длина цепи; 4) максимальное число характеристических групп 1-го типа, обозначаемых только префиксами. Каждый последующий критерий используют, если предыдущий критерий не приводит к однозначному выбору родоначальной структуры.

    Проводят нумерацию родоначальной структуры таким образом, чтобы наименьший номер получила старшая характеристическая группа. При наличии нескольких одинаковых старших функциональных групп родоначальную структуру нумеруют таким образом, чтобы заместители получили наименьшие номера.

    Называют родоначальную структуру, в названии которой старшая характеристическая группа отражается окончанием. Насыщенность или ненасыщенность родоначальной структуры отражается суффиксами –ан,-ен,-ин , которые указываются перед окончанием, которое дает старшая характеристическая группа.

    Дают названия заместителям, которые в названии соединения отражаются в виде префиксов и перечисляются в едином алфавитном порядке. Множительные префиксы в едином алфавитном порядке не учитываются. Положение каждого заместителя и каждой кратной связи указывают цифрами, соответствующими номеру атома углерода, с которым связан заместитель (для кратной связи указывают меньший номер атома углерода). Цифры ставят перед приставками и после суффиксов или окончания. Количество одинаковых заместителей отражают в названии с помощью множительных префиксов ди, три, тетра, пента и т.д.

Название соединения формируется по схеме:

Примеры названий по заместительной номенклатуре ИЮПАК:

Радикально-функциональная номенклатура имеет ограниченное использование. Главным образом она используется при названии простых моно- и бифункциональных соединений.

Если в молекуле содержится одна функциональная группа, то название соединения формируется из названий углеводородного радикала и характеристической группы:

В случае более сложных соединений выбирают родоначальную структуру, имеющую тривиальное название. Расположение заместителей, которые указываются в приставках, производится с помощью цифр, греческих букв или приставок орто-, мета-, пара-.

2.3 Конформации соединений с открытой цепью

Соединения, имеющие одинаковый качественный и количественный состав, одинаковое химическое строение, но отличающиеся расположением в пространстве атомов и групп атомов, называются стереоизомерами. Конформация – это пространственное расположение атомов в молекуле в результате вращения атомов или групп атомов вокруг одной или нескольких ординарных связей. Стереоизомеры, превращающиеся друг в друга в результате вращения вокруг ординарной связи, называются конформационными изомерами. Для их изображения на плоскости чаще всего используют стереохимические формулы или проекционные формулы Ньюмена.

В стереохимических формулах связи, лежащие в плоскости бумаги, изображают черточкой; связи, направленные к наблюдателю, обозначают жирным клином; связи, расположенные за плоскостью (уходящие от наблюдателя), обозначают заштрихованным клином. Стереохимические формулы метана и этана могут быть представлены следующим образом:

Для получения проекционных формул Ньюмена в молекуле выбирают связь С-С, дальний от наблюдателя атом углерода обозначается окружностью, ближайший к наблюдателю атом углерода и связь С-С – точкой. Три другие связи атомов углерода на плоскости отображаются под углом 120 друг относительно друга. Стереохимические формулы этана можно представить в виде проекционных формул Ньюмена следующим образом:

Вращение относительно ординарных связей в молекуле метана не приводит к изменению пространственного положения атомов в молекуле. Но в молекуле этана в результате вращения вокруг ординарной связи С-С изменяется расположение в пространстве атомов, т.е. возникают конформационные изомеры. За минимальный угол поворота (торсионный угол) принято считать угол 60. Для этана, таким образом, возникают две конформации, переходящие друг в друга при последовательных поворотах на 60. Эти конформации различаются по энергии. Конформация, в которой атомы (заместители) находятся в наиболее близком положении, так как связи заслоняют друг друга, называется заслоненной . Конформация, в которой атомы (заместители) максимально удалены друг от друга, называется заторможенной (анти -конформация). Для этана разница в энергиях конформаций невелика и равна 11,7 кДж/моль, что сопоставимо с энергией теплового движения молекул этана. Такая небольшая разница в энергиях конформационных изомеров этана не позволяет их выделить и идентифицировать при обычной температуре. Более высокой энергией обладает заслоненная конформация, что обусловлено возникновением торсионных напряжений (напряжения Питцера) - в заимодействий, вызванных отталкиванием противостоящих связей. В заторможенной конформации связи максимально удалены и взаимодействия между ними минимальны, что и обуславливает минимальную энергию конформации.

У бутана при повороте относительно связи между вторым и третьим атомами углерода возникает дополнительно скошенная конформация (гош -конформация). Кроме этого, заслоненные конформации бутана отличаются энергетически.

Заслоненная (исходная) конформация бутана характеризуется максимальной энергией, что обусловлено наличием торсионных и ван-дер-ваальсовых напряжений. Ван-дер-ваальсовы напряжения в этой конформации возникают из-за взаимного отталкивания объемных (в сравнении с атомом Н) метильных групп, оказавшихся сближенными. Такое взаимодействие увеличивает энергию конформации, делая ее энергетически невыгодной. При повороте на 60 возникает скошенная конформация, в которой нет торсионных напряжений (связи не заслоняют друг друга), а ван-дер-ваальсовы напряжения существенно уменьшаются за счет отдаления метильных групп друг от друга, поэтому энергия гош-конформации меньше на 22 кДж/моль энергии заслоненной конформации. При очередном повороте на 60 возникает заслоненная конформация, в которой, однако, имеют место только торсионные напряжения. Между атомом Н и группой СН 3 не возникают ван-дер-ваальсовы напряжения вследствии незначительного размера атома Н. Энергия такой конформации меньше энергии исходной заслоненной конформации на 7,5 кДж/моль. Очередной поворот на 60 приводит к возникновению заторможенной конформации, в которой нет торсионных и ван-дер-ваальсовых напряжений, так как связи не заслоняют друг друга, а объемные метильные группы максимально удалены друг от друга. Энергия заторможенной конформации минимальна, меньше энергии исходной заслоненой конформации на 25,5 кДж/моль, а по сравнению с энергией скошенной конформации меньше на 3,5 кДж/моль. Последующие повороты приводят в возникновению заслоненной, скошенной и исходной заслоненной конформаций. При обычных условиях большинство молекул бутана находятся в виде смеси гош- и анти-конформеров.

Цель лекции: знакомство с классификацией и номенклатурой органических соединений

План:

1. Предмет и задачи органической химии. Значение её для фармации.

2. Классификация органических соединений.

3. Принципы тривиальной и рациональной номенклатуры.

4. Принципы номенклатуры ИЮПАК.

Предмет и задачи органической химии.

Органическая химия - это раздел химии, посвященный изучению строения, способов синтеза и химических превращений углеводородов и их функциональных производных.

Термин «органическая химия » впервые ввел шведский химик Йенс Якоб Берцеллиус в 1807 г.

Благодаря особенностям своего строения органические вещества очень многочисленны. Сегодня их число достигает 10 млн.

В настоящее время состояние органической химии таково, что позволяет научно спланировать и осуществить синтез любых сложных молекул (белков, витаминов, ферментов, лекарственных препаратов и т. д.).

Органическая химия тесно связана с фармацией. Она позволяет осуществлять выделение индивидуальных лекарственных веществ из растительного и животного сырья, синтезирует и проводит очистку лекарственного сырья, определяет структуру вещества и механизм химического действия, позволяет определять подлинность того или иного лекарственного препарата. Достаточно сказать, что 95 % лекарственных средств имеют органическую природу.

Классификация органических соединений

В классификации принимаются за основу два важнейших признака: строение углеродного скелета и наличие в молекуле функциональных групп.

По строению углеродного скелета органические. соединения делятся на три большие группы.

I Ациклические (алифатические) соединения, имеющие открытую углеродную цепь как неразветвлённую, так и разветвлённую.

Родоначальными соединениями в органической химии признаны углеводороды , состоящие только из атомов углерода и водорода. Разнообразные органические соединения можно рассматривать как производные углеводородов, полученные введением в них функциональных групп.


Функциональной группой называют структурный фрагмент молекулы, характерный для данного класса органических соединений и определяющий его химические свойства.

Например, свойства спиртов определяются наличием гидроксогруппы (- ОН ), свойства аминов - аминогруппы (- NH 2 ), карбоновых кислот наличием в молекуле карбоксильной группы (- СООН ) и так далее.

Таблица 1 . Основные классы органических соединений

Такая классификация важна потому, что функциональные группы во многом определяют химические свойства данного класса соединений.

Если соединения содержат несколько функциональных групп и они одинаковые, то такие соединения называют полифункциональными (СН 2 ОН - СНОН - СН 2 ОН - глицерин), если молекула содержит разные функциональные группы, то это гетерофункциональное соединение (СН 3 - СН(ОН) - СООН - молочная кислота). Гетерофункциональные соединения можно сразу отнести к нескольким классам соединений.



Просмотров