Построение графика квадратичной функции. Визуальный гид (2019). Способы построения некоторых лекальных кривых Как начертить параболу черчение

Отдельные участки овалов являются кривыми постоянной кривизны они могут быть начерчены с помощью циркуля, в связи с чем их называют циркульными кривыми. Кривые, имеющие переменную кривизну, вычерчивают с помощью лекал и называют лекальными кривыми. К лекальным кривым относятся: эллипс, парабола, гипербола, эвольвента окружности, различного вида циклоиды, синусоиды, различные спирали. Многие лекальные кривые образуются в результате плоски сечений различных поверхностей. Так, например, эллипс, парабола и гипербола образуются при пересечении поверхности конуса плоскостями различного наклона.

Эллипс. Геометрическое место точек плоскости, сумма расстояний от которых до двух заданных точек, называемых фокусами, есть величина постоянная, называется эллипсом. Существует много способов вычерчивания эллипса. Наиболее распространенным является способ двух окружностей, диаметры которых равны большой и малой осям эллипса. Если через центр О провести произвольный диаметр, то он пересечет окружности в точках Е, F и G, Н. Через полученные точки проводят-прямые, параллельные осям эллипса; пересечение этих прямых определит две точки эллипса К и L. Обычно диаметры проводят, деля одну из окружностей на 12 равных частей.

Пусть требуется вписать эллипс в параллелограмм. Принимают нижнюю сторону параллелограмма за сторону квадрата, строят на ней квадрат и вписывают в него окружность. Центру О окружности будет соответствовать центр О" эллипса, диаметру АВ окружности будет соответствовать сопряженный диаметр А"В" эллипса и т. д. Делят половину диаметра OD и половину сопряженного диаметра O"D" на равные части (например, на четыре) и проводят через точки деления линии, параллельные АВ. На соответственных прямых будут находиться соответствующие точки окружности и эллипса, например Е и Е". Получают эти точки с помощью ломаных прямых, параллельных ломаной ODO". В технике эллипсы встречаются в спицах маховиков, в эллиптических зубчатых колесах.

TBegin-->TEnd-->

Рис. 1. Построение эллипсоида. Построение эллипса, вписанного в параллелограмм

Парабола. Геометрическое место точек плоскости, равноудаленных от данной точки, являющейся фокусом, и данной прямой, являющейся директрисой, называется параболой. Наиболее часто параболу приходится строить, сопрягая ею прямые разного направления (рис. 2, а). Для построения параболы на участке АВ делят отрезки прямых АО и ОВ на одинаковое число равных частей, обозначают точки деления в последовательности 1-5, 1—5; одинаково обозначенные точки соединяют прямыми и проводят кривую, касательную к семейству прямых.

TBegin-->
TEnd-->

Рис. 2. Построение параболы

Можно построить параболу по ее вершине А и произвольной точке В (рис. 2, б). Для этого проводят через точку А ось параболы АС; строят на ней прямоугольник ADBC; стороны прямоугольника делят и обозначают так же, как в предыдущем случае; через точки деления на прямой AD проводят отрезки, параллельные оси параболы, а точки деления, находящиеся на прямой DB, соединяют с вершиной параболы Л; точки пересечения прямых, проходящих через точки, обозначенные одинаковыми цифрами, будут являться точками параболы (точки I, II, III).

Гипербола
. Геометрическое место точек плоскости, разность расстояний от которых до двух заданных точек (фокусов) есть величина постоянная, называется гиперболой. Гипербола в техническом черчении встречается в деталях конической формы, усеченных плоскостями. Кривую обычно строят, используя методы начертательной геометрии. Геометрические приемы построения этой кривой не отличаются простотой; вот один из них. Для построения гиперболы по сторонам угла АО и ОВ (асимптотам) и какой-либо точке С проводят через эту точку линии, параллельные асимптотам (рис. 3). Затем пересекают эти линии лучами О 1 , О 2 и т. д. и из точек пересечения лучей вновь проводят линии, параллельные асимптотам, до их взаимного пересечения в точках 11, 21. Эти точки и являются точками гиперболы. Ветви гиперболы при продолжении приближаются к асимптотам, но практически никогда с ними не пересекаются. Существует другой практический прием построения гиперболы.

Урок: как построить параболу или квадратичную функцию?

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Парабола — это график функции описанный формулой ax 2 +bx+c=0.
Чтобы построить параболу нужно следовать простому алгоритму действий:

1) Формула параболы y=ax 2 +bx+c ,
если а>0 то ветви параболы направленны вверх ,
а то ветви параболы направлены вниз .
Свободный член c эта точке пересекается параболы с осью OY;

2) , ее находят по формуле x=(-b)/2a , найденный x подставляем в уравнение параболы и находим y ;

3) Нули функции или по другому точки пересечения параболы с осью OX они еще называются корнями уравнения. Чтобы найти корни мы уравнение приравниваем к 0 ax 2 +bx+c=0 ;

Виды уравнений:

a) Полное квадратное уравнение имеет вид ax 2 +bx+c=0 и решается по дискриминанту;
b) Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
ax 2 +bx=0,
х(ax+b)=0,
х=0 и ax+b=0;
c)Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);

4) Найти несколько дополнительных точек для построения функции.

ПРАКТИЧЕСКАЯ ЧАСТЬ

И так теперь на примере разберем все по действиям:
Пример №1:
y=x 2 +4x+3
c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2) 2 +4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
Найдем корни уравнения x 2 +4x+3=0
По дискриминанту находим корни
a=1 b=4 c=3
D=b 2 -4ac=16-12=4
x=(-b±√(D))/2a
x 1 =(-4+2)/2=-1
x 2 =(-4-2)/2=-3

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2

х -4 -3 -1 0
у 3 0 0 3

Подставляем вместо х в уравнение y=x 2 +4x+3 значения
y=(-4) 2 +4*(-4)+3=16-16+3=3
y=(-3) 2 +4*(-3)+3=9-12+3=0
y=(-1) 2 +4*(-1)+3=1-4+3=0
y=(0) 2 +4*(0)+3=0-0+3=3
Видно по значениям функции,что парабола симметрична относительно прямой х=-2

Пример №2:
y=-x 2 +4x
c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1 Найдем корни уравнения -x 2 +4x=0
Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
х(-x+4)=0, х=0 и x=4.

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
х 0 1 3 4
у 0 3 3 0
Подставляем вместо х в уравнение y=-x 2 +4x значения
y=0 2 +4*0=0
y=-(1) 2 +4*1=-1+4=3
y=-(3) 2 +4*3=-9+13=3
y=-(4) 2 +4*4=-16+16=0
Видно по значениям функции,что парабола симметрична относительно прямой х=2

Пример №3
y=x 2 -4
c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0) 2 -4=-4 вершина находится в точке (0;-4)
Найдем корни уравнения x 2 -4=0
Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
x 2 =4
x 1 =2
x 2 =-2

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
х -2 -1 1 2
у 0 -3 -3 0
Подставляем вместо х в уравнение y= x 2 -4 значения
y=(-2) 2 -4=4-4=0
y=(-1) 2 -4=1-4=-3
y=1 2 -4=1-4=-3
y=2 2 -4=4-4=0
Видно по значениям функции,что парабола симметрична относительно прямой х=0

Подписывайтесь на канал на YOUTUBE , чтобы быть в курсе всех новинок и готовится с нами к экзаменам.

Это кривые линии, у которых на каждом их элементе непрерывно изменяется кривизна. Лекальные кривые не могут быть вычерчены с помощью циркуля, их построение выполняется по ряду точек. При вычерчивании кривой полученный ряд точек соединяют по лекалу, поэтому ее называют лекальной кривой линией. Точность построения лекальной кривой повышается с увеличением числа промежуточных точек на участке кривой.

К лекальным кривым относятся так называемые плоские сечения конуса – эллипс , парабола , гипербола , которые получаются в результате сечения кругового конуса плоскостью. Такие кривые рассматривались при изучении курса «Начертательная геометрия». К лекальным кривым также относят эвольвенту , синусоиду, спираль Архимеда , циклоидальные кривые .

Эллипс - геометрическое место точек, сумма расстояний которых до двух неподвижных точек (фокусов) есть величина постоянная.

Наиболее широко применяется способ построения эллипса по заданным полуосям АВ и СD. При построении проводят две концентрические окружности, диаметры которых равны заданным осям эллипса. Для построения 12 точек эллипса окружности делят на 12 равных частей и полученные точки соединяют с центром.

На рис. 14 показано построение шести точек верхней половины эллипса; нижняя половина вычерчивается аналогично.

Эвольвента - является траекторией точки окружности, образованной ее развертыванием и выпрямлением (развертка окружности).

Построение эвольвенты по заданному диаметру окружности показано на рис. 15 Окружность делится на восемь равных частей. Из точек 1,2,3 проводят касательные к окружности, направленные в одну сторону. На последней касательной откладывают шаг эвольвенты, равный длине окружности

(2 R), и полученный отрезок делят также на 8 равных частей. Откладывая на первой касательной одну часть, на второй – две части, на третьей – три части и т.д, получают точки эвольвенты.

Циклоидальные кривые - плоские кривые линии, описываемые точкой, принадлежащей окружности, катящейся без скольжения по прямой линии или окружности. Если при этом окружность катится по прямой линии, то точка описывает кривую, называемую циклоидной.

Построение циклоиды по заданному диаметру окружности d показано на рис.16.

Рис. 16

Окружность и отрезок длиной 2R делят на 12 равных частей. Через центр окружности проводят прямую, параллельную отрезку. Из точек деления отрезка к прямой проводят перпендикуляры. В точках их пересечения с прямой получаем О 1 , О 2 , О 3 и т.д. - центры перекатываемой окружности.

Из этих центров описываем дуги радиусом R. Через точки деления окружности проводим прямые параллельные прямой, соединяющей центры окружностей. На пересечении прямой, проходящей через точку 1 с дугой, описанной из центра О1, находится одна из точек циклоиды; через точку 2 с другой из центра О2 - другая точка и т.д.

Если же окружность катится по другой окружности, находясь внутри нее (по вогнутой части), то точка описывает кривую называемую гипоциклоидой. Если окружность катится по другой окружности, находясь вне ее (по выпуклой части), то точка описывает кривую, называемую эпициклоидой.

Построение гипоциклоиды и эпициклоиды аналогично, только вместо отрезка длиной 2R берется дуга направляющей окружности.

Построение эпициклоиды по заданному радиусу подвижной и неподвижной окружностей показано на рис.17. Угол α, который вычисляется, и окружность радиуса R делят на восемь равных частей. Проводится дуга окружности радиуса R+r и из точек О 1 , О 2 , О 3 .. – окружности радиуса r.

Построение гипоциклоиды по заданным радиусам подвижной и неподвижной окружности показано на рис.18. Угол α, который подсчитывается, и окружность радиуса R делятся на восемь равных частей. Проводится дуга окружности радиусом R - r и из точек О 1 , О 2 , О 3 … - окружности радиусом r.

Парабола - это геометрическое место точек, равноудаленных от неподвижной точки - фокуса F и неподвижной прямой - директрисы, перпендикулярной к оси симметрии параболы. Построение параболы по заданному отрезку ОО =АВ и хорде СD показано на рис.19

Прямые ОЕ и ОС разделены на одинаковое число равных частей. Дальнейшее построение ясно из чертежа.

Гипербола - геометрическое место точек, разность расстояний которых от двух неподвижных точек (фокусов) - есть величина постоянная. Представляет собой две разомкнутые, симметрично расположенные ветви.

Постоянные точки гиперболы F 1 и F 2 - это фокусы, а расстояние между ними называется фокусным. Отрезки прямых, соединяющие точки кривой с фокусами, называются радиус-векторами. Гипербола имеет две взаимно перпендикулярные оси - действительную и мнимую. Прямые, проходящие через центр пересечения осей, называются асимптотами.

Построение гиперболы по заданному фокусному расстоянию F 1 F 2 и углу α между асимптотами показано на рис.20. Проводится ось, на которой откладывается фокусное расстояние, которое делится пополам точкой О. Через точку О проводится окружность радиуса 0,5F 1 F 2 до пересечения в точках C, D, E, K. Соединяя точки C с D и E c K, получают точки А и В – вершины гиперболы. От точки F 1 влево отмечают произвольные точки 1, 2, 3… расстояния между которыми должны увеличиваться по мере удаления от фокуса. Из фокусных точек F 1 и F 2 радиусами R=B4 и r=A4 проводятся дуги до взаимного пересечения. Точки пересечения 4 являются точками гиперболы. Остальные точки строятся аналогично.

Синусоида - плоская кривая, выражающая закон изменения синуса угла в зависимости от изменения величины угла.

Построение синусоиды по заданному диаметру окружности d показано

на рис. 21

Для ее построения делят данную окружность на 12 равных частей; на такое же число равных частей делится отрезок, равный длине данной окружности (2R). Проводя через точки деления горизонтальные и вертикальные прямые, находят в пересечении их точки синусоиды.

Спираль Архимеда - э то плоская кривая, описываемая точкой, которая равномерно вращается вокруг заданного центра и вместе с тем равномерно удаляется от него.

Построение спирали Архимеда заданному диаметру окружности D показано на рис.22

Окружность и радиус окружности поделен на 12 равных частей. Дальнейшее построение видно из чертежа.

При выполнении построении сопряжений и лекальных кривых приходится прибегать к простейшим геометрическим построениям - таким как деление окружности или прямой на несколько равных частей, деление угла и отрезка пополам, построение перпендикуляров, биссектрис и т.д. Все эти построения изучались в дисциплине «Черчение» школьного курса, поэтому подробно в данном пособии не рассматриваются.

§ 22. Лекальные кривые

Лекальными называют плоские кривые, вычерченные с помощью лекал по предварительно построенным точкам. К лекальным кривым относят: эллипс параболу, гиперболу, циклоиду, синусоиду эвольвенту и др.

Эллипс представляет собой замкнутую плоскую кривую второго порядка. Она характеризуется тем, что сумма расстояний от любой ее


Рис. 37

точки до двух точек фокусов есть величина постоянная, равная большей оси эллипса. Построить эллипс можно несколькими способами. Например, можно построить эллипс по его большой АВ и малой CD осям (рис. 37, а). На осях эллипса как на диаметрах строят две окружности, которые можно разделить радиусами на несколько частей. Через точки деления большой окружности проводят прямые, параллельные малой оси эллипса, а через точки деления малой окружности - прямые, параллельные большой оси эллипса. Точки пересечения этих прямых и являются точками эллипса.

Можно привести пример построения эллипса по двум сопряженным диаметрам (рис. 37,б) MN и KL. Сопряженными два диаметра называют, если каждый из них делит пополам хорды, параллельные другому диаметру. На сопряженных диаметрах строят параллелограмм. Один из диаметров MN делят на равные части; на такие же части делят и стороны параллелограмма, параллельные другому диаметру, нумеруя их, как показано на чертеже. Из концов второго сопряженного диаметра KL через точки деления проводят лучи. В пересечении одноименных лучей получают точки эллипса.

Параболой называют незамкнутую кривую второго порядка, все точки которой равно удалены от одной точки - фокуса и от данной прямой - директрисы.

Рассмотрим пример построения параболы по ее вершине О и какой-либо точке В (рис. 38, а). С этой целью строят прямоугольник ОABC и делят его стороны на равные части, из точек деления проводят лучи. В пересечении одноименных лучей получают точки параболы.

Можно привести пример построения параболы в виде кривой, касательной прямой с заданными на них точками А и В (рис. 38, б). Стороны угла, образованного этими прямыми, делят на равные части и ну-

меруют точки деления. Одноименные точки соединяют прямыми. Параболу вычерчивают как огибающую этих прямых.

Гиперболой называют плоскую незамкнутую кривую второго порядка, состоящую из двух веток, концы которых удаляются в бесконечность, стремясь к своим асимптотам. Гипербола отличается тем, что каждая точка ее обладает особым свойством: разность ее расстояний от двух данных точек-фокусов есть величина постоянная, равная расстоянию между вершинами кривой. Если асимптоты гиперболы взаимно перпендикулярны, она называется равнобокой. Равнобокая гипербола широко применяется для построения различных диаграмм, когда задана своими координатами одна точка М (рис. 38, в). В этом случае через заданную точку проводят линии АВ и KL параллельно координатным осям. Из полученных точек пересечения проводят линии, параллельные координатным осям. В их пересечении получают точки гиперболы.

Циклоидой называют кривую линию, представляющую собой траекторию точки А при перекатывании окружности (рис. 39). Для построения циклоиды от исходного положения точки А откладывают отрезок АА], отмечают промежуточное положение точки А. Так, в пересечении прямой, проходящей через точку 1, с окружностью, описанной из центра О 1 , получают первую точку циклоиды. Соединяя плавной прямой построенные точки, получают циклоиду.

Синусоидой называют плоскую кривую, изображающую изменение синуса в зависимости от изменения его угла. Для построения синусоиды (рис. 40) нужно разделить окружность на равные части и на такое же количество равных частей разделить отрезок прямой АВ = 2лR. Из одноименных точек деления провести взаимно перпендикулярные линии, в пересечении которых получают точки, принадлежащие синусоиде.

Эвольвентой называют плоскую кривую, являющуюся траекторией любой точки прямой линии, перекатываемой по окружности без скольжения. Построение эвольвенты выполняют в следующем порядке (рис. 41): окружность делят на равные части; проводят касательные к окружности, направленные в одну сторону и проходящие через каждую точку деления; на касательной, проведенной через последнюю точку деления окружности, откладывают отрезок, равный длине окружности 2 лR, который делят на столько же равных частей. На первой касательной откладывают одно деление 2 лR/n , на второй - два и т. д.

Полученные точки соединяют плавной кривой и получают эвольвенту окружности.

Лекальные кривые – это такие кривые, которые могут быть вычерчены только с помощью лекала по предварительно построенным точкам. Лекальные кривые широко применяются в очертаниях различных деталей и предметов. Это могут быть профили зубчатых колес и кулачков, очертания кронштейнов, подвесок, посуды и мебели. Лекальные кривые могут быть также получены в результате сечения цилиндра, конуса и других тел вращения плоскостью.

33.3.1. Порядок вычерчивания лекальных кривых

Пусть на рисунке 196, а заданы точки 1 , 2 , ..., 11 принадлежащие некоторой кривой. Предварительно эти точки от руки с помощью мягкого карандаша соединяют тонкой, по возможности более плавной кривой линией (рис. 196, б). Желательно, чтобы расстояние между точками лекальной кривой не превышало 15 мм. Если же две соседние точки кривой расположены далеко друг от друга и характер кривой не совсем ясен, то следует построить дополнительно еще одну или две точки.

Рис. 196
Затем приступают к предварительной обводке кривой с помощью лекала. Лекало надо подобрать такое, чтобы очертания некоторых его участков были похожи на отдельные участки данной кривой. Предварительный подбор лекала рекомендуется делать на длину всей кривой и черточками на нем помечать выбранные участки. Это особенно важно для обводки симметричных кривых, таких, как эллипс, парабола и др.

Подобранное лекало прикладывают к кривой так, чтобы лежащие подряд как минимум три или четыре точки кривой совпали с определенным участком лекала (например, точки 1–5 на рисунке 196, б). Далее подбирают следующий участок лекала таким образом, чтобы он охватывал также три или четыре точки кривой, включая хотя бы одну точку из предыдущего участка (например, точки 4–9 на рисунке 196, в). Благодаря такому перекрытию двух соседних участков достигается плавность кривой. После того, как будут подобраны участки лекала на протяжении всей кривой, приступают к окончательной обводке ее карандашом или тушью Обводку следует начинать с места наиболее крутого изгиба кривой. На каждом участке обводят среднюю часть его, включая половину участков перекрытия. Такая обводка обеспечивает наибольшую плавность кривой (рис. 196, г).

33.3.2. Способы построения некоторых лекальных кривых

Эллипс. Если рассечь поверхность кругового конуса наклонной плоскостью Р так, чтобы она пересекла все его образующие, то в плоскости сечения получится эллипс (рис. 197).

Рис. 197– Пересечение конуса плоскостью по эллипсу
Эллипс (рис. 198) – плоская замкнутая кривая, у которой сумма расстояний от любой ее точки (например, от точки М ) до двух заданный точек F 1 и F 2 – фокусов эллипса – есть величина постоянная, равная длине его большой оси AB (например, F 1 M + F 2 M = AB ). Отрезок AB называется большой осью эллипса, а отрезок CD его малой осью. Оси эллипса пересекаются в точке O центре эллипса, а его размер определяет длина большой и малой осей. Точки F 1 и F 2 расположены на большой оси AB симметрично относительно точки O и удалены от концов малой оси (точек С и D ) на расстояние, равное половине большой оси эллипса
.

Рис. 198
Существует несколько способов построения эллипса. Наиболее просто построить эллипс по двум его осям при помощи вспомогательных окружностей (рис. 199). В этом случае задают центр эллипса – точку O и через нее проводят две взаимно перпендикулярные прямые (рис. 199 а). Из точки О описывают две окружности радиусами, равными половине большой и малой осей. Большую окружность делят на 12 равных частей и точки деления соединяют с точкой О . Проведенные линии разделят меньшую окружность также на 12 равных частей. Затем через точки деления меньшей окружности проводят горизонтальные прямые (или прямые, параллельные большой оси эллипса), а через точки деления большей окружности – вертикальные (или прямые, параллельные малой оси эллипса). Точки их пересечения (например, точка М ) принадлежат эллипсу. Соединив полученные точки плавной кривой, получают эллипс (рис. 199, б).

Рис. 199
Парабола. Если круговой конус рассечь плоскостью Р , параллельной одной из его образующих, то в плоскости сечения получится парабола (рис. 200).

Рис. 200– Пересечение конуса плоскостью по параболе
Парабола (рис. 201) – плоская кривая, каждая точка которой удалена на одинаковое расстояние от заданной прямой DD 1 , называемой директрисой , и точки F – фокуса параболы . Например, для точки М отрезки MN (расстояние до директрисы) и MF (расстояние до фокуса) равны, т. е. MN = MF .

Парабола имеет форму разомкнутой кривой с одной осью симметрии, которая проходит через фокус параболы – точку F и расположена перпендикулярно к директрисе DD 1 . Точна A , лежащая на середине отрезка OF , называется вершиной параболы . Расстояние от фокуса до директрисы – отрезок OF = 2 OA обозначают буквой р и называют параметром параболы . Чем больше параметр р , тем резче ветви параболы отходят от ее оси. Отрезок, заключенный между двумя точками параболы, расположенными симметрично относительно оси параболы, называется хордой (например, хорда M К ).

Рис. 201
Построение параболы по ее директрисе DD 1 и фокусу F (рис. 202, а). Через точку F перпендикулярно к директрисе проводят ось параболы до пересечения ее с директрисой в точке О. Отрезок OF = p делят пополам и получают точку A вершину параболы. На оси параболы от точки A откладывают несколько постепенно увеличивающихся отрезков. Через точки деления 1, 2, 3 и т. д. проводят прямые, параллельные директрисе. Приняв фокус параболы за центр, описывают дуги радиусом R 1 = L 1 1 , радиусом R 2 = L 2 до пересечения с прямой, проведенной через точку 2 , и т. д. Полученный точки принадлежат параболе. Вначале их соединяют тонкой плавной линией от руки, затем обводят по лекалу.

Построение параболы по ее оси, вершине А и промежуточной точке М (рис. 202, б). Через вершину A проводят прямую, перпендикулярную к оси параболы, а через точку М – прямую, параллельную оси. Обе прямые пересекаются в точке B . Отрезки AB и BM делят на одинаковое число равных частей, а точки деления нумеруют в направлениях, указанных стрелками. Через вершину A и точки 1 , 2 , 3 , 4 проводят лучи, а из точек I , II , III , IV прямые, параллельные оси параболы. На пересечении прямых, обозначенных одинаковым номером, расположены точки, принадлежащие параболе. Обе ветви параболы одинаковы, поэтому другую ветвь строят симметрично первой с помощью хорд.

Рис. 202
Построение параболы, касательной к двум прямым OA и ОВ в данных на них точках A и В (рис. 203, б). Отрезки O A и ОВ делят на одинаковое число равных частей (например, на 8 частей). Полученные точки деления нумеруют и одноименные точки соединяют прямыми 1 –1 , 2 2 , 3 3 и т. д. Эти прямые являются касательными к параболической кривой. Далее в образованный прямыми контур вписывают плавную касательную кривую – параболу.


Рис. 203– Построение параболы по двум ее точкам и касательным

Гипербола. Если рассечь прямой и обратный конусы плоскостью, параллельной двум его образующим или в частном случае параллельной оси, то в плоскости сечения получится гипербола, состоящая из двух симметричных ветвей (рис. 204, а).

Гиперболой (рис. 204, б) называется незамкнутая плоская кривая, представляющая собой множество точек, разность расстояний которых от двух данных точек есть величина постоянная.

Рис. 204– Пересечение конуса плоскостью по гиперболе (а) и построение гиперболы (б)


Постоянные точки F 1 и F 2 называются фокусами , а расстояние между ними – фокусным расстоянием . Отрезки прямой (F 1 M и F 2 M ), соединяющие какую-нибудь точку (M ) кривой с фокусами, называются радиус–векторами гиперболы. Разность расстояний точки от фокусов F 1 и F 2 есть величина постоянная и равная расстоянию между вершинами а и b гиперболы; например, для точки M будем иметь: F 1 M - F 2 M = ab. Гипербола состоит из двух незамкнутых ветвей, имеет две взаимно перпендикулярные оси – действительную АВ и мнимую CD. Прямые pq и rs, проходящие через центр O называются асимптотами .

Построение гиперболы по данным асимптотам pq и rs, фокусам F 1 и F 2 приведено на рисунке 204, б.

Действительная ось АВ гиперболы является биссектрисой угла, образованного асимптотами. Мнимая ось CD перпендикулярна АВ и проходит через точку О. Имея фокусы F 1 и F 2 , определяют вершины а и b гиперболы, для чего на отрезке F 1 F 2 строят полуокружность, которая пересекает асимптоты в точках m и п. Из этих точек опускают перпендикуляры на ось A B и на пересечении с ней получают вершины а и b гиперболы.

Для построения правой ветви гиперболы на прямой АВ правее фокуса F 1 намечают произвольные точки 1 , 2 , 3 , . .., 5. Точки V и V1 гиперболы получаются, если принять отрезок а5 за радиус и из точки F2 провести дугу окружности, которую засекают из точки F 1 , радиусом, равным b 5. Остальные точки гиперболы строятся по аналогии с описанным.

Иногда приходится строить гиперболу, у которой асимптоты ОХ и OY взаимно перпендикулярны (рис. 205). В этом случае действительная и мнимая оси будут бисс ектрисами прямых углов. Для построения задается одна из точек гиперболы, например точка А.

Рис. 205– Построение гиперболы с взаимно перпендикулярными асимптотами


Через точку A проводят прямые АK и AM , параллельные осям ох и . Из точки O перес ечения ос ей проводят прямые, перес екающие прямые AM и АK в точках 1 , 2 , 3 , 4 и 1" , 2" , 3" , 4" . Далее из точек пересечения с этими прямыми проводят вертикальные и горизонтальные отрезки до их взаимного пересечения в точках I, II, III, IV и т. д. Полученные точки гиперболы соединяют с помощью лекала. Точки 1, 2, 3, 4 , расположенные на вертикальной прямой, берутся произвольно.

Эвольвента окружности или развертка окружности. Эвольвентой окружности называется плоская кривая, которую описывает каждая точка прямой линии, если эту прямую катить без скольжения по неподвижной окружности (траектория точек окружности, образованная ее развертыванием и выпрямлением) (рис. 206).

Для построения эвольвенты достаточно задать диаметр окружности D и начальное положение точки A (точку A 0 ). Через точку A 0 проводят касательную к окружности и на ней откладывают длину заданной окружности
D . Полученный отрезок и окружность делят на одинаковое число частей и через точки деления окружности проводят в одном направлении касательные к ней. На каждой касательной откладывают отрезки, взятые с горизонтальной прямой и соответственно равные 1A 1 = A 0 1 , 2 A 2 = В A 0 2 , 3A 3 = А 0 3 и т. д.; полученные точки соединяют по лекалу.



Рис. 206
Спираль Архимеда Спиралью Архимеда называется плоская кривая, которую описывает точка A , равномерно вращающаяся вокруг неподвижной точки – полюса О и одновременно равномерно удаляющаяся от него (рис. 206). Расстояние, пройденное точкой при повороте прямой на 360°, называют шагом спирали. Точки, принадлежащие спирали Архимеда, строят, исходя из определения кривой, задаваясь шагом и направлением вращения.

Построение спирали Архимеда по заданному шагу (отрезок ОА) и направлению вращения по часовой стрелке (рис. 206). Через точку О проводят прямую, откладывают на ней величину шага спирали OA и, приняв его за радиус, описывают окружность. Окружность и отрезок OA делят на 12 равных частей. Через точки деления окружности проводят радиусы O 1 , O 2 , O 3 и т. д. и на них от точки О откладывают при помощи дуг соответственно 1/12, 2/12, 3/12 и т. д. радиуса окружности. Полученные точки соединяют по лекалу плавной кривой.

Спираль Архимеда является незамкнутой кривой, и при необходимости можно построить любое число ее витков. Для построения второго витка описывают окружность радиусом R = 2
OA
и повторяют все предыдущие построения.



Рис. 207
Синусоида. Синусоидой называется проекция траектории точки, движущейс я по цилиндричес кой винтовой линии, на плоскость, параллельную оси цилиндра. Движение точки складывается из равномерно–вращательного движения (вокруг оси цилиндра) и равномерно–поступательного (параллельно оси цилиндра). Синусоида – это плоская кривая, которая показывает изменение тригонометрической функции синуса в зависимости от изменения величины угла.

Для построения синусоиды (рис. 208) через центр О окружности диаметра D проводят прямую ОХ и на ней откладывают отрезок O 1 A , равный длине окружности
D. Этот отрезок и окружность делят на одинаковое число равных частей. Из полученных и занумерованных точек проводят взаимно перпендикулярные прямые. Полученные точки пересечения этих прямых соединяют с помощью лекала плавной кривой.

Рис. 208– Построение синусоиды
Кардиоида . Кардиоидой (рис. 209) называетс я замкнутая траектория точки окружнос ти, которая катится без скольжения по неподвижной окружности того же радиуса.

Рис. 209– Построение кардиоиды


Из центра О проводят окружность заданного радиуса и берут на ней произвольную точку M. Через эту точку проводят ряд секущих. На каждой секущей по обе стороны от точки пересечения ее с окружностью откладывают отрезки, равные диаметру окружности M 1. Так, секущая III 3МIII 1 пересекает окружность в точке 3 ; 3III и 3III 1 , равные диаметру M 1. Точки III и III 1 , принадлежат кардиоиде. По аналогии, с екущая IV4MIV 1 перес екает окружность в точке 4; от этой точки откладывают отрезки IV4 и 4IV 1 , равные диаметру M1 , получают точки IV и IV 1 и т. д.

Найденные точки соединяют кривой, как указано на рисунке 209.

Циклоидальные кривые . Циклоиды плоские кривые линии, описываемые точкой, принадлежащей окружности, катящейся без скольжения по прямой линии или окружности. Если при этом окружность катится по прямой линии, то точка описывает кривую, называемую циклоидой .

Если окружность катится по другой окружности, находясь вне ее (по выпуклой части), то точка описывает кривую, называемую эпициклоидой .

Если же окружность катится по другой окружности, находясь внутри ее (по вогнутой части), то точка описывает кривую, называемую гипоциклоидой . Окружность, на которой расположена точка, называется производящей . Линия, по которой катится окружность, называется направляющей .

Для построения циклоиды (рис. 210) проводят окружность заданного радиуса R ; на ней берут начальную точку A и проводят направляющую прямую АВ, по которой катится окружность.

Рис. 210– Построение циклоиды


Делят заданную окружность на 12 равных частей (точки 1" , 2" , 3" , . .., 12"). Если точка A перемес титс я в положение A 12 , то отрезок AA 12 будет равен длине заданной окружнос ти, т. е.
. Проводят линию центров О – O 12 производящей окружнос ти, равную
, и делят ее на 12 равных частей. Получают точки O 1 , O 2 , O 3 , ..., O 12 , являющиеся центрами производящей окружнос ти. Из этих точек проводят окружнос ти (или дуги окружнос тей) заданного радиуса R , которые касаются прямой АВ в точках 1, 2, 3, ..., 12. Если от каждой точки касания отложить на соответствующей окружности длину дуги, равную величине, на которую переместилась точка A , то получим точки, принадлежащие циклоиде. Например, для получения точки A 5 циклоиды следует из центра O 5 провести окружность и от точки касания 5 отложить по окружности дугу А5, равную А5", или из точки 5" провести прямую, параллельную АВ, до пересечения в точке A 5 с проведенной окружностью. Аналогично строят и все другие точки циклоиды.

Эпициклоида строится следующим образом . На рисунке 211 изображены производящая окружность радиус а R с центром O 0 , начальная точка A на ней и дуга направляющей окружнос ти радиус а R 1 , по которой катитс я окружность. Построение эпициклоиды аналогично построению циклоиды, а именно: делят заданную окружность на 12 равных частей (точки 1" , 2" , 3" , ..., 12"), каждую часть этой окружности откладывают от точки A по дуге АВ 12 раз (точки 1 , 2 , 3 , ... , 12) и получают длину дуги AA 12 . Эту длину можно определить с помощью угла
.

Далее из центра О радиусом, равным OO 0 , наносят линию центров производящей окружности и, проводя радиусы 01 , 02 , 03 , ..., 012 , продолженные до пересечения с линией центров, получают центры О ч. 21 ч. 22 ч. 23



Просмотров