Основной постулат молекулярной биологии. Центральная догма молекулярной генетики Центральная догма молекулярной биологии

Синтез белка

1. Транскрипция (переписывание информации с ДНК на иРНК). В определенном участке ДНК разрываются водородные связи, получается две одинарных цепочки. На одной из них по принципу комплементарности строится иРНК. Затем она отсоединяется и уходит в цитоплазму, а цепочки ДНК снова соединяются между собой.

2. Процессинг (только у эукариот) – созревание иРНК: удаление из нее участков, не кодирующих белок, а так же присоединение управляющих участков.

3. Экспорт иРНК из ядра в цитоплазму (только у эукариот). Происходит через ядерные поры; всего экспортируется примерно 5% от общего количества иРНК в ядре.

4. Синтез аминоацил-тРНК. В цитоплазме имеется 61 фермент аминоацил-тРНК-синтетаза. Он комплементарно узнает аминокислоту и тРНК, которая должна ее переносить, и соединяет их между собой, при этом затрачивается 1 АТФ.

5. Трансляция (синтез белка). Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома соединяет между собой аминокислоты, принесенные тРНК, получается белок.

6. Созревание белка. Вырезание из белка ненужных фрагментов, присоединение небелковых компонентов (например, гема), соединение нескольких полипептидов в четвертичную структуру.

http://biokhimija.ru/lekcii-po-biohimii/21-matrichnye-biosintezy/95-transljacija.html

Существуют три процесса молекулярной биологии

Основной фигурой матричных биосинтезов являются нуклеиновые кислоты РНК и ДНК. Они представляют собой полимерные молекулы, в состав которых входят азотистые основания пяти типов, пентозы двух типов и остатки фосфорной кислоты. Азотистые основания в нуклеиновых кислотах могут быть пуриновыми (аденин , гуанин ) и пиримидиновыми (цитозин ,урацил (только в РНК), тимин (только в ДНК)). В зависимости от строения углевода выделяютрибонуклеиновые кислоты – содержат рибозу (РНК), и дезоксирибонуклеиновые кислоты – содержат дезоксирибозу (ДНК).

Термин "матричные биосинтезы " подразумевает способность клетки синтезировать полимерные молекулы, таких как нуклеиновые кислоты и белки , на основе шаблона –матрицы . Это обеспечивает точную передачу сложнейшей структуры от уже существующих молекул к новосинтезируемым.

Основной постулат молекулярной биологии

В подавляющем большинстве случаев передача наследственной информации от материнской клетки к дочерней осуществляется при помощи ДНК (репликация ). Для использования генетической информации самой клеткой необходимы РНК, образуемые на матрице ДНК (транскрипция ). Далее РНК непосредственно участвуют на всех этапах синтеза белковых молекул (трансляция ), обеспечивающих структуру и деятельность клетки.

Строение клеточного ядра

Фракционирование клеток.В настоящее время фракционирование позволяет получать практически любые клеточные органеллы и структуры: ядра, ядрышки, хроматин, ядерные оболочки, плазматическую мембрану, вакуоли эндоплазматического ретикулума, и т.д.

Специальные методы

Перед получением клеточных фракций клетки разрушают путем гомогенизации. Затем из гомогенатов выделяют фракции. Основным способом выделения клеточных структур является разделительное центрифугирование. Оно основано на том, что более тяжелые частицы быстрее оседают на дно центрифужной пробирки.

При небольших ускорениях (1-3 тыс. g) раньше оседают ядра и неразрушенные клетки, при 15-30 тыс. g оседают более крупные частицы или маакросомы, состоящие из митохондрий, мелких пластид, пероксисом, лизосом и др., при 50 тыс. g оседают микросомы, фрагменты вакуолярной системы клетки. При повторном центрифугировании смешанных подфракций выделяют чистые фракции. Для более тонкого разделения фракций используют центрифугирование в градиенте плотности сахарозы. Получение отдельных клеточных компонентов позволяет изучать их биохимию и функциональные особенности, создавать бесклеточные системы, например, для рибосом, которые могут синтезировать белок по заданной экспериментатором информационной РНК, или для воссоздания клеточных надмолекулярных структур. Такие искусственные системы помогают изучать тонкие процессы, протекающие в клетке.

Метод клеточной инженерии. После специальной обработки различные живые клетки могут сливаться друг с другом и образовывать двуядерную клетку или гетерокарион. Гетерокарионы, особенно образованные из близкородственных клеток (например, мыши и хомячки), могут вступать в митоз и давать истинно гибридные клетки. Другие приемы позволяют конструировать клетки из разных по происхождению ядер и цитоплазмы.

В настоящее время клеточная инженерия широко применяются не только в экспериментальной биологии, но и в биотехнологии. Например, при получении моноклональных антител.

Клетка обладает огромным числом разнообразных функцй, главными рабочими механизмами выполнения этих функций являются белки или их комплексы с другими биологическими макромолекулами. Практически все процессы синтеза, распада, перестройки разных белков, нуклеиновых кислот, липидов, углеводов происходят с участием белков-ферментов. Сокращение, приводящее к подвижности клеток или к перемещение веществ и структур внутри клеток, осуществляется также специальными сократительными белками. Многие реакции клеток в ответ на воздействие внешних факторов (вирусов, гормонов, чужеродных белков и др.) начинаются с взаимодействия этих факторов со специальными клеточными белками-рецепторами.


Белки – это основные компоненты практически всех клеточных структур. Структура каждого отдельно взятого белка строго специфична, что выражается в специфичности их первичной структуры – в последовательности аминокислот вдоль полипептидной, белковой цепи. Такая правильность в воспроизведении однозначной последовательности аминокислот в белковой цепи обуславливается структурой ДНК того генного участка, который в конечном счете отвечает за структуру и синтез данного белка. Это положение является основным постулатом молекулярной биологии или её «догмой». Кроме того центральная догма подчеркивает однонаправленность передачи информации: только от ДНК к белку (ДНК ® иРНК ® белок) и отрицает обратные пути - от белка к нуклеиновой кислоте.

На основании современных знаний биосинтез белков представляет собой следующую принципиальную схему.

Главная роль в определении специфической структуры белков принадлежит ДНК. Молекула ДНК, состоящая из двух взаимозакрученных полимерных цепей, представляет собой линейную структуру, мономерами, которой являются четыре сорта дезоксирибонуклеотидов, чередование или последовательность которых вдоль цепи уникальная и специфична для каждой молекулы ДНК и каждого ее участка. За синтез каждого белка ответствен определенный участок молекулы ДНК. Участок молекулы ДНК, в котором заключена вся информация о структуре одного соответствующего белка. назвали цистроном. В настоящее время понятие цистрон рассматривают как эквивалентное понятию ген.

Известно, что, в отличие от остальных компонентов белоксинтезирующего аппарата, местом нахождения в клетках ДНК эукариотических организмов является клеточное ядро. У низших (прокариотических) организмов, не имеющих оформленного клеточного ядра, ДНК также отделена от остальной части протоплазмы в виде одного или нескольких компактных нуклеотидов.

В основе макромолекулярной структуры ДНК лежит так называемый принцип комплементарности. Он означает, что противолежащие нуклеотиды двух взаимозакрученных цепей ДНК своей пространственной структурой дополняют друг друга. Такими взаимодополняющими – комплементарными – парами нуклеотидов являются пара А-Т (аденин-тимин) и пара Г-Ц (гуанин-цитозин).

Синтез новых молекул ДНК в клетке происходит только на базе уже имеющихся молекул ДНК. При этом две цепи исходной молекулы ДНК начинают с одного из концов расходиться, и на каждом из разошедшихся однотяжных участков начинает собираться из присутствующих в среде свободных нуклеотидов вторая цепь в точном соответствии с принципом комплементарности. В каждой «дочерней» молекуле ДНК одна цепь целиком происходит от исходной, а другая является заново синтезированной.

Необходимо подчеркнуть, что потенциальная способность к точному воспроизведению заложена в самой двутяжной комплементарной структуре ДНК и открытие этого является одним из главных достижений биологии.

Для осуществления процесса синтеза – воспроизведения ДНК по описанной выше схеме необходима деятельность специального фермента, носящего название ДНК-полимеразы. Именно этот фермент осуществляет последовательно идущий от одного конца молекулы ДНК к другому процесс расхождения двух цепей с одновременной полимеризацией на них свободных нуклеотидов по комплементарному принципу.

Следовательно, ДНК, подобно матрице, лишь задает порядок расположения нуклеотидов в синтезирующихся цепях, а сам процесс ведет белок. ДНК и отдельные ее функциональные участки, несущие информацию о структуре белков, сами непосредственного участия в процессе создания белковых молекул не принимают. Первым этапом на пути к реализации этой информации является так называемый процесс транскрипции, или «переписывания». В этом процессе на цепи ДНК, как на матрице, происходит синтез химически родственного полимера – рибонуклеиновой кислоты (РНК). Молекула РНК представляет собой одну цепь, мономерами которой являются четыре сорта рибонуклеотидов. Последовательность расположения четырех сортов рибонуклеотидов в образующейся цепи РНК в точности повторяет последовательность расположения соответствующих дезоксирибонуклеотидов одной из двух цепей ДНК. Благодаря этому информация, записанная в структуре данного гена, целиком переписывается на РНК. С каждого гена может сниматься теоретически неограниченное количество «копий» – молекул РНК. Молекулы РНК входят в связь с белоксинтезирующими частицами клетки и принимают непосредственное участие в синтезе белковых молекул. Иными словами, они переносят информацию от мест её хранения в места её реализации. Вот почему эти РНК обозначают как информационные или матричные РНК, сокращенно мРНК или иРНК.

Синтезирующаяся цепь информационной РНК в качестве матрицы прямо использует соответствующий участок ДНК. При этом синтезируемая цепь мРНК точно копирует по своей нуклеотидной последовательности одну из двух цепей ДНК (урацилу (У) в РНК соответствует его производное тимин (Т) в ДНК). Всё происходит на основе того же принципа комплементарности, который определяет редупликацию ДНК. В итоге происходит «переписывание» или транскрипция информации с ДНК на РНК. «Переписанные» сочетания нуклеотидов РНК уже непосредственно определяют расстановку кодируемых ими аминокислот в цепи белка.

Теперь как создается белок? Известно, что рода мономерами белковой молекулы являются аминокислоты, которых имеется 20 различных сортов. Для каждого сорта аминокислоты в клетке существуют свои специфические, присоединяющие только этот сорт аминокислоты молекулы адапторных РНК. В навещенном на РНК виде, аминокислоты поступают в белоксинтезирующие частицы - рибосомы и уже там под диктовку информационной РНК расставляются в цепочку синтезируемого белка.

Главным в биосинтезе белка является слияние в рибосомах двух внутриклеточных потоков – потока информации и потока материала. Рибосомы - это биохимические «машины» молекулярных размеров, в которых из поступающих аминокислотных остатков, согласно плану, заключенному в информационной РНК, собираются специфические белки. Каждая клетка сдержит тысячи рибсом, по их количеству в клетке определяют интенсивность белкового синтеза. По своей химической природе рибосома относится к рибонуклеопротеидам и состоит из особой рибосомной РНК и молекул рибосомного белка. Рибосомы обладают свойством прочитывать информацию, заключенную в цепи мРНК, и реализовать ее в виде готовой белковой молекулы. Сущность процесса заключается в том, что линейная расстановка 20 сортов аминокислот в цепи белка определяется расположением четырех сортов нуклеотидов в цепи совсем иного полимера – нуклеиновой кислоты (мРНК). Поэтому этот процесс, происходящий в рибосоме, принято обозначать термином «трансляция», или «перевод» - перевод с 4-буквенного алфавита цепей нуклеиновых кислот на 20-буквенный алфавит белковых (полипептидных) цепей. В данном процессе трансляции участвуют все три известных класса РНК: информационная РНК, являющаяся объектом трансляции, рибосомная РНК, играющая роль организатора рибосомы, и адапторные РНК, осуществляющие функцию переводчика.

Процесс синтеза белка начинается с образования соединений аминокислот с молекулами адапторных РНК. При этом сначала происходит энергетическая «активация» аминокислоты за счет ее ферментативной реакции с молекулой аденозинтрифосфата (АТФ), а затем «активированная» аминокислота соединяется с концом относительно недлинной цепочки тРНК, приращение химической энергии активированной аминокислоты запасается при этом в виде энергии химической связи между аминокислотой и тРНК.

Следует добавить, что реакцию между аминокислотой и молекулой тРНК ведет фермент аминоацил-тРНК-синтетаза. Для каждой из 20 аминокислот существуют свои ферменты, осуществляющие реакцию с участием только данной аминокислоты

Центральная догма молекулярной биологии

Строение клеточного ядра

Фракционирование клеток.Сегодня фракционирование позволяет получать практически любые клеточные органеллы и структуры: ядра, ядрышки, хроматин, ядерные оболочки, плазматическую мембрану, вакуоли эндоплазматического ретикулума, и т.д.

Специальные методы

Перед получением клеточных фракций клетки разрушают путем гомогенизации. Далее из гомогенатов выделяют фракции. Основным способом выделœения клеточных структур является разделительное центрифугирование. Оно основано на том, что более тяжелые частицы быстрее осœедают на дно центрифужной пробирки.

При небольших ускорениях (1-3 тыс. g) раньше осœедают ядра и неразрушенные клетки, при 15-30 тыс. g осœедают более крупные частицы или маакросомы, состоящие из митохондрий, мелких пластид, пероксисом, лизосом и др., при 50 тыс. g осœедают микросомы, фрагменты вакуолярной системы клетки. При повторном центрифугировании смешанных подфракций выделяют чистые фракции. Для более тонкого разделœения фракций используют центрифугирование в градиенте плотности сахарозы. Получение отдельных клеточных компонентов позволяет изучать их биохимию и функциональные особенности, создавать бесклеточные системы, к примеру, для рибосом, которые могут синтезировать белок по заданной экспериментатором информационной РНК, или для воссоздания клеточных надмолекулярных структур.
Размещено на реф.рф
Такие искусственные системы помогают изучать тонкие процессы, протекающие в клетке.

Метод клеточной инженерии. После специальной обработки различные живые клетки могут сливаться друг с другом и образовывать двуядерную клетку или гетерокарион. Гетерокарионы, особенно образованные из близкородственных клеток (к примеру, мыши и хомячки), могут вступать в митоз и давать истинно гибридные клетки. Другие приемы позволяют конструировать клетки из разных по происхождению ядер и цитоплазмы.

Сегодня клеточная инженерия широко применяются не только в экспериментальной биологии, но и в биотехнологии. К примеру, при получении моноклональных антител.

Клетка обладает огромным числом разнообразных функцй, главными рабочими механизмами выполнения этих функций являются белки или их комплексы с другими биологическими макромолекулами. Практически всœе процессы синтеза, распада, перестройки разных белков, нуклеиновых кислот, липидов, углеводов происходят с участием белков-ферментов. Сокращение, приводящее к подвижности клеток или к перемещение веществ и структур внутри клеток, осуществляется также специальными сократительными белками. Многие реакции клеток в ответ на воздействие внешних факторов (вирусов, гормонов, чужеродных белков и др.) начинаются с взаимодействия этих факторов со специальными клеточными белками-рецепторами.

Белки - ϶ᴛᴏ основные компоненты практически всœех клеточных структур.
Размещено на реф.рф
Структура каждого отдельно взятого белка строго специфична, что выражается в специфичности их первичной структуры – в последовательности аминокислот вдоль полипептидной, белковой цепи. Такая правильность в воспроизведении однозначной последовательности аминокислот в белковой цепи обуславливается структурой ДНК того генного участка, который в конечном счете отвечает за структуру и синтез данного белка. Это положение является основным постулатом молекулярной биологии или её ʼʼдогмойʼʼ. Кроме того центральная догма подчеркивает однонаправленность передачи информации: только от ДНК к белку (ДНК ® иРНК ® белок) и отрицает обратные пути - от белка к нуклеиновой кислоте.

На основании современных знаний биосинтез белков представляет собой следующую принципиальную схему.

Главная роль в определœении специфической структуры белков принадлежит ДНК. Молекула ДНК, состоящая из двух взаимозакрученных полимерных цепей, представляет собой линœейную структуру, мономерами, которой являются четыре сорта дезоксирибонуклеотидов, чередование или последовательность которых вдоль цепи уникальная и специфична для каждой молекулы ДНК и каждого ее участка. За синтез каждого белка ответствен определœенный участок молекулы ДНК. Участок молекулы ДНК, в котором заключена вся информация о структуре одного соответствующего белка. назвали цистроном. Сегодня понятие цистрон рассматривают как эквивалентное понятию ген.

Известно, что, в отличие от остальных компонентов белоксинтезирующего аппарата͵ местом нахождения в клетках ДНК эукариотических организмов является клеточное ядро. У низших (прокариотических) организмов, не имеющих оформленного клеточного ядра, ДНК также отделœена от остальной части протоплазмы в виде одного или нескольких компактных нуклеотидов.

В корне макромолекулярной структуры ДНК лежит так называемый принцип комплементарности. Он означает, что противолежащие нуклеотиды двух взаимозакрученных цепей ДНК своей пространственной структурой дополняют друг друга. Такими взаимодополняющими – комплементарными – парами нуклеотидов являются пара А-Т (аденин-тимин) и пара Г-Ц (гуанин-цитозин).

Синтез новых молекул ДНК в клетке происходит только на базе уже имеющихся молекул ДНК. При этом две цепи исходной молекулы ДНК начинают с одного из концов расходиться, и на каждом из разошедшихся однотяжных участков начинает собираться из присутствующих в среде свободных нуклеотидов вторая цепь в точном соответствии с принципом комплементарности. В каждой ʼʼдочернейʼʼ молекуле ДНК одна цепь целиком происходит от исходной, а другая является заново синтезированной.

Необходимо подчеркнуть, что потенциальная способность к точному воспроизведению заложена в самой двутяжной комплементарной структуре ДНК и открытие этого является одним из главных достижений биологии.

Для осуществления процесса синтеза – воспроизведения ДНК по описанной выше схеме необходима деятельность специального фермента͵ носящего название ДНК-полимеразы. Именно данный фермент осуществляет последовательно идущий от одного конца молекулы ДНК к другому процесс расхождения двух цепей с одновременной полимеризацией на них свободных нуклеотидов по комплементарному принципу.

Следовательно, ДНК, подобно матрице, лишь задает порядок расположения нуклеотидов в синтезирующихся цепях, а сам процесс ведет белок. ДНК и отдельные ее функциональные участки, несущие информацию о структуре белков, сами непосредственного участия в процессе создания белковых молекул не принимают. Первым этапом на пути к реализации этой информации является так называемый процесс транскрипции, или ʼʼпереписыванияʼʼ. В этом процессе на цепи ДНК, как на матрице, происходит синтез химически родственного полимера – рибонуклеиновой кислоты (РНК). Молекула РНК представляет собой одну цепь, мономерами которой являются четыре сорта рибонуклеотидов. Последовательность расположения четырех сортов рибонуклеотидов в образующейся цепи РНК в точности повторяет последовательность расположения соответствующих дезоксирибонуклеотидов одной из двух цепей ДНК. Благодаря этому информация, записанная в структуре данного гена, целиком переписывается на РНК. С каждого гена может сниматься теоретически неограниченное количество ʼʼкопийʼʼ – молекул РНК. Молекулы РНК входят в связь с белоксинтезирующими частицами клетки и принимают непосредственное участие в синтезе белковых молекул. Иными словами, они переносят информацию от мест её хранения в места её реализации. Вот почему эти РНК обозначают как информационные или матричные РНК, сокращенно мРНК или иРНК.

Синтезирующаяся цепь информационной РНК в качестве матрицы прямо использует соответствующий участок ДНК. При этом синтезируемая цепь мРНК точно копирует по своей нуклеотидной последовательности одну из двух цепей ДНК (урацилу (У) в РНК соответствует его производное тимин (Т) в ДНК). Всё происходит на базе того же принципа комплементарности, который определяет редупликацию ДНК. В итоге происходит ʼʼпереписываниеʼʼ или транскрипция информации с ДНК на РНК. ʼʼПереписанныеʼʼ сочетания нуклеотидов РНК уже непосредственно определяют расстановку кодируемых ими аминокислот в цепи белка.

Теперь как создается белок? Известно, что рода мономерами белковой молекулы являются аминокислоты, которых имеется 20 различных сортов. Для каждого сорта аминокислоты в клетке существуют свои специфические, присоединяющие только данный сорт аминокислоты молекулы адапторных РНК. В навещенном на РНК виде, аминокислоты поступают в белоксинтезирующие частицы - рибосомы и уже там под диктовку информационной РНК расставляются в цепочку синтезируемого белка.

Главным в биосинтезе белка является слияние в рибосомах двух внутриклеточных потоков – потока информации и потока материала. Рибосомы - это биохимические ʼʼмашиныʼʼ молекулярных размеров, в которых из поступающих аминокислотных остатков, согласно плану, заключенному в информационной РНК, собираются специфические белки. Каждая клетка сдержит тысячи рибсом, по их количеству в клетке определяют интенсивность белкового синтеза. По своей химической природе рибосома относится к рибонуклеопротеидам и состоит из особой рибосомной РНК и молекул рибосомного белка. Рибосомы обладают свойством прочитывать информацию, заключенную в цепи мРНК, и реализовать ее в виде готовой белковой молекулы. Сущность процесса состоит по сути в том, что линœейная расстановка 20 сортов аминокислот в цепи белка определяется расположением четырех сортов нуклеотидов в цепи совсœем иного полимера – нуклеиновой кислоты (мРНК). По этой причине данный процесс, происходящий в рибосоме, принято обозначать термином ʼʼтрансляцияʼʼ, или ʼʼпереводʼʼ - перевод с 4-буквенного алфавита цепей нуклеиновых кислот на 20-буквенный алфавит белковых (полипептидных) цепей. В данном процессе трансляции участвуют всœе три известных класса РНК: информационная РНК, являющаяся объектом трансляции, рибосомная РНК, играющая роль организатора рибосомы, и адапторные РНК, осуществляющие функцию переводчика.

Процесс синтеза белка начинается с образования соединœений аминокислот с молекулами адапторных РНК. При этом сначала происходит энергетическая ʼʼактивацияʼʼ аминокислоты за счёт ее ферментативной реакции с молекулой аденозинтрифосфата (АТФ), а затем ʼʼактивированнаяʼʼ аминокислота соединяется с концом относительно недлинной цепочки тРНК, приращение химической энергии активированной аминокислоты запасается при этом в виде энергии химической связи между аминокислотой и тРНК.

Следует добавить, что реакцию между аминокислотой и молекулой тРНК ведет фермент аминоацил-тРНК-синтетаза. Для каждой из 20 аминокислот существуют свои ферменты, осуществляющие реакцию с участием только данной аминокислоты

Центральная догма молекулярной биологии - понятие и виды. Классификация и особенности категории "Центральная догма молекулярной биологии" 2017, 2018.

Когда нас в университете надменные биохимики спрашивали, с чего это мы считаем молекулярную биологию наукой, в то время, как это всего-лишь отрасль биохимии, я даже не нашлась что сказать. Потом, вооружившись понятиями из методологии науки, все-таки определила, что наука должна иметь «Объект» и «Методы», отличные от других наук. В это смысле, объект молекулярной биологии — это всего два типа молекул, оба биологические полимеры (то есть это цепочки, которые состоят из мономеров).

Первый тип молекул это нуклеиновые кислоты : ДНК и РНК. Мономеры ДНК это нуклеотиды и их всего четыре: аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц). Мономеры РНК почти те же, за исключением того, что вместо тимина используется урацил (У).
Второй тип молекул это белки . Мономер белка — аминокислота. Их есть всего 20 разных.

(Кроме четырех основных нуклеотидов и 20 аминокислот в природе существуют еще различные вариации, но это мы пока не рассматриваем и для понимания догмы это не важно).

Про перенос информации поподробнее, ибо это и есть Основная Догма, которую впервые озвучил Фрэнсис Крик в 1970 году в журнале Nature:» The central dogma of molecular biology deals with the detailed residue-by-residue transfer of sequential information. It states that such information cannot be transferred back from protein to either protein or nucleic acid.» Выглядела тогда эта догма вот так: информация переносится в направлении ДНК—>РНК—>белок .

С тех пор все изменилось и обросло подробностями, которые если не опрокинули Догму, то существенно ее поправили и дополнили. Но все по-порядку. То есть направление передачи ДНК—>РНК—>белок никто не отменил и это основной поток передачи информации в живой клетки. И сначала про него.

ДНК это двухцепочечный полимер, находится в клеточном ядре (есть еще не только в ядре, но и в митохондрии например) и способно удваиваться. То есть это передача наследственной информации от родителей к потомкам. Процесс удваивания ДНК называется репликация . Репликацию осуществляет комплекс энзимов, который раскручивает полимер, а другой энзимный комплекс синтезирует копию ДНК из отдельных нуклеотидов (тех, которых четыре, и которые А, Т, Г и Ц) по принципу комплементарности (не буду останавливатся на принципе, надеюсь это даже со школы забыть сложно. Скажу только, что для Т комплементарен А, а для Г, соответственно Ц, причем пара ГЦ образует более сильную химическую связь). Напомню, это перенос ДНК—>ДНК (репликация).

Помимо репликации, на ДНК может происходить синтез матричной РНК (мРНК ). Называется этот процесс транскрипция. Происходит это там же в ядре. мРНК синтезируется на генных участках генома (да, есть еще другие). Другими словами, мРНК это работающий ген. мРНК одноцепочечная.
Транскрипцию осуществляет энзимный комплекс транскрипционных факторов, которые определяют, какой ген сейчас надо «включить» и насинтезировать из него мРНК, и энзимный комплекс РНК-полимеразы, которая как-раз и синтезирует на ДНК РНКу, по тому же самом принципу комплементарности (только не забываем, что вместо тимидина встраивается урацил). Напомню, это перенос ДНК—>РНК (транскрипция).

Насинтезировання мРНК из ядра переносится в цитозоль (содержимое клетки). Там она модифицируется, проходит так называемый процессинг, из нее лишнее вырезается (интроны), надевается шапочка и пришивается длинный хвост из полиаденина. После этого мРНК готова для того, чтобы с нее считали информацию и насинтезировали белок , согласно коду. Это процесс называется трансляция . Для этого она встречается с большой машиной, которая называется рибосома и которая состоит из большого количества запчастей, в основном это белки, структурные и регуляторные, есть также РНК, но вы не путайтесь, это химически РНК, а структурно это кирпич). Рибосома нанизывается на мРНК и включает процесс трансляции. По очереди прочитываются по три нуклеотида (триплет), каждому триплету соответствует одна аминокислота (которых всего 20), правильную аминокислоту подносят маленькие транспортные молекулы (тоже, кстати, РНК, но вы постарайтесь не путаться, это химически РНК, а функционально это машинка такая). В общем это так выглядит, рибосома едет по мРНК, считывает информацию, а с другой стороны у нее вылазит белок, который затем приводится в порядок, то есть скручивается в клубок. Напомню, это перенос РНК—>белок (трансляция).

Остальной перенос информации от РНК на ДНК, от РНК на РНК, от ДНК на белок, а также интересный случай перенсения информации из белка на белок и как на это смотрит Догма, мы рассмотрим с следующей главе. А на завершение тест по материалу:

I.Трансляция это:
1. что-то из радио и телевидения?
2. процесс считывания информации с мРНК рибосомой и синтез белка.
3. я все еще путаю транскрипцию и трансляцию.

II.Молекулярные биологи это:
1. недоученные биохимики.
2. ученые, работающие с двумя типами биологических полимеров.
3. согласен с определением по Юзу Алешковскому .

III.Рибосома это:
1. такая рыба
2. путаю с хромосомой
3. молекулярная машина, с помощью которой происходит процесс трансляции.

IV.Нуклеотидов в природе:
1. 20
2. 4 в ДНК плюс 4 в РНК. Вместе получается 5.
3. 22+X(Y)

Генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле.

Информация, содержащаяся в биологических последовательностях

Биополимеры - это синтезируемые живыми существами биологические полимеры . ДНК, РНК и белки относятся к линейным полимерам, которые собираются путём последовательного присоединения друг к другу отдельных элементов - мономеров . Последовательность мономеров кодирует информацию, правила передачи которой описываются центральной догмой. Информация передаётся с высокой точностью, детерминистически и один биополимер используется как шаблон для сборки другого полимера с последовательностью, которая полностью определяется последовательностью первого полимера.

Универсальные способы передачи биологической информации

В живых организмах встречаются три вида гетерогенных, то есть состоящих из разных мономеров полимера - ДНК, РНК и белок. Передача информации между ними может осуществляться девятью (3 × 3 = 9) способами. Центральная догма разделяет эти девять типов передачи информации на три группы:

  • общие типы - встречающиеся у большинства живых организмов;
  • специальные типы - встречающиеся в виде исключения, у вирусов , у мобильных элементов генома или в условиях биологического эксперимента ;
  • неизвестные типы - не обнаруженные.

Общие способы передачи информации

Трансляция: РНК → белок

Репликация РНК: РНК → РНК

Репликация РНК - копирование цепи РНК на комплементарную ей цепь РНК с помощью фермента РНК-зависимой РНК-полимеразы. Таким способом реплицируются вирусы, содержащие одноцепочечную (например, пикорнавирусы, к которым относится вирус ящура) или двуцепочечную РНК.

Прямая трансляция белка на матрице ДНК: ДНК → белок

Прямая трансляция была продемонстрирована в клеточных экстрактах кишечной палочки . Экстракты содержали рибосомы , но не иРНК , синтезировали белки с введённых в систему ДНК; антибиотик неомицин усиливал этот эффект .

Эпигенетические изменения

Эпигенетические изменения - это изменения в проявлении генов, не обусловленные изменением генетической информации (мутациями). Эпигенетические изменения происходят в результате модификации уровня экспрессии генов, то есть их транскрипции и/или трансляции. Наиболее изученным видом эпигенетической регуляции является метилирование ДНК с помощью белков ДНК-метилтрансфераз , что приводит к временной, зависящей от условий жизни организма инактивации метилированного гена . Однако поскольку первичная структура молекулы ДНК при этом не изменяется, это исключение нельзя считать истинным примером передачи информации от белка к ДНК.

Прионы

Прионы - белки, которые существуют в двух формах. Одна из форм (конформаций) белка является функциональной, обычно растворимой в воде. Вторая форма образует нерастворимые в воде агрегаты, часто в виде молекулярных трубочек-полимеров. Мономер - молекула белка - в этой конформации способен присоединяться к другим сходным молекулам белка, переводя их во вторую, прионоподобную, конформацию. У грибов такие молекулы могут передаваться по наследству. Но, как и в случае метилирования ДНК, первичная структура белка в данном случае остаётся прежней, и переноса информации на нуклеиновые кислоты не происходит.

История возникновения термина «догма»

Хорас Джадсон (англ. Horace Judson ) написал в книге «Восьмой день творения»:

«Я считал, что догма - это идея, которая не подтверждена фактами. Понимаете?». И Крик воскликнул с удовольствием: «Я просто не знал, что означает „гипотеза “ в гипотезе о последовательности, кроме того, я хотел предположить, что это новое допущение более центральное и сильное… Как оказалось, использование термина „догма“ вызвало больше неприятностей, чем оно того стоило… Через много лет Жак Моно сказал мне, что по-видимому я не понимал, что подразумевается под словом „догма“, которая означает часть веры, не подлежащая сомнению. Я смутно опасался подобного значения слова, но поскольку я считал, что все религиозные убеждения не имеют основания, я использовал слово так, как понимал его я, а не большинство других людей, применив его к грандиозной гипотезе, которая, несмотря на внушаемое ею доверие, была основана на небольшом количестве прямых экспериментальных данных».

Оригинальный текст (англ.) // The Eighth Day of Creation: Makers of the Revolution in Biology (25th anniversary edition). - 1996.



Просмотров