Как сформулировать принципа даламбера. Аналитическая механика материальной точки и динамика твердого тела эйлера Теоретическая механика принцип даламбера примеры

При движении материальной точки её ускорение в каждый момент времени таково, что приложенные к точке заданные (активные) силы, реакции связей и фиктивная Даламберова сила Ф = - та образуют уравновешенную систему сил.

Доказательство. Рассмотрим движение несвободной материальной точки массой т в инерциальной системе отсчета. Согласно основному закону динамики и принципу освобождения от связей имеем:

где F - равнодействующая заданных (активных) сил; N - равнодействующая реакций всех наложенных на точку связей.

Нетрудно преобразовать (13.1) к виду:

Вектор Ф = - та называют Даламберовой силой инерции, силой инерции или просто Даламберовой силой. Далее будем использовать только последний термин.

Уравнение (13.3), выражающее принцип Даламбера в символьной форме, называют уравнением кинетостатики материальной точки.

Легко получить обобщение принципа Даламбера для механической системы (системы п материальных точек).

Для любой к -й точки механической системы выполняется равенство (13.3):

где ? к - равнодействующая заданных (активных) сил, действующих на к -ю точку; N к - равнодействующая реакций связей, наложенных на к-ю точку; Ф к = - та к - Даламберова сила к -й точки.

Очевидно, что если условия уравновешенности (13.4) выполняются для каждой тройки сил F*, N* : , Ф* = 1,. .., п ), то и вся система 3п сил

является уравновешенной.

Следовательно, при движении механической системы в каждый момент времени приложенные к ней активные силы, реакции связей и Даламберовы силы точек системы образуют уравновешенную систему сил.

Силы системы (13.5) уже не являются сходящимися, поэтому, как известно из статики (п. 3.4), необходимые и достаточные условия её уравновешенности имеют следующий вид:

Уравнения (13.6) называют уравнениями кинетостатики механической системы. Для расчетов используют проекции этих векторных уравнений на оси, проходящие через моментную точку О.

Замечание 1. Поскольку сумма всех внутренних сил системы, а также сумма их моментов относительно любой точки равны нулю, то в уравнениях (13.6) достаточно учитывать лишь реакции внешних связей.

Уравнения кинетостатики (13.6) обычно используют для определения реакций связей механической системы, когда движение системы задано, а поэтому ускорения точек системы и зависящие от них Далам- беровы силы известны.

Пример 1. Найти реакции опор А и В вала при его равномерном вращении с частотой 5000 об/мин.

С валом жестко связаны точечные массы гп = 0,1 кг, т 2 = 0,2 кг. Известны размеры АС - CD - DB = 0,4 м, h = 0,01 м. Массу вала считать пренебрежимо малой.

Решение. Чтобы воспользоваться принципом Даламбера для механической системы, состоящей из двух точечных масс, укажем на схеме (рис. 13.2) заданные силы (силы тяжести) Gi, G 2 , реакции связей N4, N# и Даламберовы силы Ф|, Ф 2 .

Направления Даламбсровых сил противоположны ускорениям точечных масс т ь т 2у которые равномерно описывают окружности радиуса h вокруг оси АВ вала.

Находим величины сил тяжести и Даламбсровых сил:

Здесь угловая скорость вала со- 5000* л/30 = 523,6 с Проецируя уравнения кинетостатики (13.6) на декартовы оси Ах, Ay , Az , получим условия уравновешенности плоской системы параллельных сил Gi, G 2 , 1Чд, N tf , Ф ь Ф 2:


Из уравнения моментов находим N в = - + - 1 - - - 2 --- =

(0,98 + 274) 0,4 - (548 -1,96) 0,8 w „

272 Н, а из уравнения проекции на

ось Ay: N a = -N B +G,+G 2 +Ф,-Ф 2 = 272 + 0,98 +1,96 + 274-548 =0,06 Н.

Уравнения кинетостатики (13.6) можно использовать и для получения дифференциальных уравнений движения системы, если составить их так, что реакции связей исключаются и в результате появляется возможность получить зависимости ускорений от заданных сил.

Методы решения задач механики, которые до сих пор рассматривались, основываются на уравнениях, вытекающих или непосредственно из законов Ньютона, или же из общих теорем, являющихся следствием этих законов. Однако этот путь не является единственным. Оказывается, что уравнения движения или условия равновесия механической системы можно получить, положив в основу вместо законов Ньютона другие общие положения, называемые принципами механики. В ряде случаев применение этих принципов позволяет, как мы увидим, найти более эффективные методы решения соответствующих задач. В этой главе будет рассмотрен один из общих принципов механики, называемый принципом Даламбера.

Найдем сначала выражение принципа для одной материальной точки. Пусть на материальную точку с массой действует система активных сил, равнодействующую которых обозначим и реакция связи N (если точка является несвободной). Под действием всех этих сил точка будет двигаться по отношению к инерциальной системе отсчета с некоторым ускорением а.

Введем в рассмотрение величину

имеющую размерность силы. Векторную величину, равную по модулю произведению массы точки на ее ускорение и направленную противоположно этому ускорению, называют силой инерции точки.

Тогда оказывается, что движение точки обладает следующим свойством: если в любой момент времени к действующим на точку активным силам и реакции связи присоединить силу инерции, то полученная система сил будет уравновешенной, т. е.

Это положение выражает принцип Даламбера для материальной точки. Нетрудно убедиться, что оно эквивалентно второму закону Ньютона и наоборот. В самом деле, второй закон Ньютона для рассматриваемой точки дает Перенося здесь величину та в правую часть равенства и учитывая обозначение (84), придем к соотношению (85). Наоборот, перенося в уравнении (85) величину в другую часть равенства и учитывая обозначение (84), получим выражение второго закона Ньютона.

Рассмотрим теперь механическую систему, состоящую из материальных точек. Выделим какую-нибудь из точек системы с массой . Под действием приложенных к ней внешних и внутренних сил (в которые входят и активные силы, и реакции связей) точка будет двигаться по отношению к инерциальной системе отсчета с некоторым ускорением Введя для этой точки силу инерции получим согласно равенству (85), что

т. е. что образуют уравновешенную систему сил. Повторяя такие рассуждения для каждой из точек системы, придем к следующему результату, выражающему принцип Даламбера для системы: если в любой момент времени к каждой из точек системы кроме действующих на нее внешних и внутренних сил присоединить соответствующие силы инерции, то полученная система сил будет уравновешенной и к ней можно применять все уравнения статики.

Математически принцип Даламбера для системы выражается векторными равенствами вида (85), которые, очевидно, эквивалентны дифференциальным уравнениям движения системы (13), полученным в § 106. Следовательно, из принципа Даламбера, как и из уравнений (13), можно получить все общие теоремы динамики.

Значение принципа Даламбера состоит в том, что при непосредственном его применении к задачам динамики уравнения движения системы составляются в форме хорошо известных уравнений равновесия; это делает единообразным подход к решению задач и часто упрощает соответствующие расчеты. Кроме того, в соединении с принципом возможных перемещений, который будет рассмотрен в следующей главе, принцип Даламбера позволяет получить новый общий метод решения задач динамики (см. § 141).

Из статики известно, что геометрическая сумма сил, находящихся в равновесии, и сумма их моментов относительно любого центра О равны нулю, причем, как показано в § 120, это справедливо для сил, действующих не только на твердое тело но и на любую изменяемую механическую систему.

Тогда на основании принципа Даламбера должно быть:

Введем обозначения:

Величины представляют собою главный вектор и главный момент относительно центра О системы сил инерции. В результате, учитывая, что геометрическая сумма внутренних сил и сумма их моментов равны нулю, получим из равенств (86):

Применение уравнений (88), вытекающих из принципа Даламбера, упрощает процесс решения задач, так как эти уравнения не содержат внутренних сил. По существу уравнения (88) эквивалентны уравнениям, выражающим теоремы об изменении количества движения и главного момента количеств движения системы, и отличаются от них только по форме.

Уравнениями (88) особенно удобно пользоваться при изучении движения твердого тела или системы твердых тел. Для полного изучения движения любой изменяемой системы этих уравнений будет недостаточно, так же как недостаточно уравнений статики для изучения равновесия любой механической системы (см. § 120).

В проекциях на координатные оси равенства (88) дают уравнения, аналогичные соответствующим уравнениям статики (см. § 16, 30). Чтобы пользоваться этими уравнениями при решении задач, надо знать выражения главного вектора и главного момента сил инерций.

В заключение следует подчеркнуть, что при изучении движения по отношению к инерциальной системе отсчета, которое здесь и рассматривается, силы инерции вводятся только тогда, когда для решения задач применяется принцип Даламбера

Определение 1

Принцип Даламбера является в теоретической механике одним из главных принципов динамики. Согласно этому принципу, при условии присоединения силы инерции к активно действующим на точки механической системы силам и реакциям наложенных связей, получается уравновешенная система.

Данный принцип получил название в честь французского ученого Ж. Даламбера, впервые предложившего его формулировку в своем сочинении «Динамика».

Определение принципа Даламбера

Замечание 1

Принцип Даламбера звучит следующим образом: если к воздействующей на тело активной силе прикладывается дополнительная сила инерции, тело будет пребывать в равновесном состоянии. При этом суммарное значение всех действующих в системе сил, дополненное вектором инерции, получит нулевое значение.

Согласно указанному принципу, в отношении каждой i-той точки системы, становится верным равенство:

$F_i+N_i+J_i=0$, где:

  • $F_i$ -активно воздействующая на эту точку сила,
  • $N_i$ - реакция связи, наложенной на точку;
  • $J_i$ - сила инерции, определяемая формулой $J_i=-m_ia_i$ (она направлена противоположно этому ускорению).

Фактически, отдельно для каждой рассматриваемой материальной точки $ma$ переносится справа налево (второй закон Ньютона):

$F=ma$, $F-ma=0$.

$ma$ при этом называется силой инерции Даламбера.

Такое понятие, как сила инерции, было введено еще Ньютоном. Согласно рассуждениям ученого, при условии движения точки под воздействием силы $F=ma$, тело (или система) – становится источником этой силы. При этом, согласно закону о равенстве действия и противодействия, ускоряемая точка будет влиять на ускоряющее ее тело с силой $Ф=-ma$. Такой силе Ньютон дал название системы инерции точки.

Силы $F$ и $Ф$ будут равными и противоположными, но приложенными к разным телам, что исключает их сложение. Непосредственно на точку сила инерции воздействия не оказывает, поскольку для нее она представляет фиктивную силу. При этом точка оставалась бы в состоянии покоя, если бы, помимо силы $F$, на точку оказывала воздействие еще и сила $Ф$.

Замечание 2

Принцип Даламбера позволяет применять при решении задач динамики более упрощенные методы статики, что объясняет его широкое применение в инженерной практике. На этом принципе основывается метод кинетостатики. Особенно он удобен в применении с целью установления реакций связей в ситуации, когда известен закон происходящего движения или он получен при решении соответствующих уравнений.

Разновидностью принципа Даламбера выступает принцип Германа-Эйлера, фактически представлявшего собой форму данного принципа, но обнаруженную до появления публикации сочинения ученого в 1743 году. При этом принцип Эйлера не рассматривался его автором (в отличие от принципа Даламбера) в качестве основы для общего метода решения задач движения механических систем со связями. Принцип Даламбера считается более целесообразным в применении в случае необходимости определения неизвестных сил (для решения первой задачи динамики).

Принцип Даламбера для материальной точки

Многообразие типов решаемых в механике задач нуждается в разработке эффективных методик составления уравнений движения для механических систем. Одним из подобных методов, позволяющих посредством уравнений описать движение произвольных систем, считается в теоретической механике принцип Даламбера.

Опираясь на второй закон динамики, для несвободной материальной точки запишем формулу:

$m\bar{a}=\bar{F}+\bar{R}$,

где $R$ представляет реакцию связи.

Принимая значение:

$\bar{Ф}=-m\bar{a}$, где $Ф$- сила инерции, получаем:

$\bar{F}+\bar{R}+\bar{Ф}=0$

Эта формула является выражением принципа Даламбера для материальной точки, согласно которому, для движущейся в любой момент времени точки геометрическая сумма воздействующих на нее активных сил и силы инерции получает нулевое значение. Этот принцип позволяет записывать уравнения статики для движущейся точки.

Принцип Даламбера для механической системы

Для состоящей из $n$-точек механической системы, можно записать $n$-уравнений вида:

$\bar{F_i}+ \bar{R_i}+\bar{Ф_i}=0$

При суммировании всех этих уравнений и введении следующих обозначений:

которые являются главными векторами внешних сил, реакции связей и сил инерции соответственно, получаем:

$\sum{F_i}+\sum{R_i}+\sum{Ф_i}=0$, т. е.

$FE + R + Ф = 0$

Условием для равновесного состояния твердого тела является нулевое значение главных вектора и момента действующих сил. Учитывая это положение и теорему Вариньона о моменте равнодействующей в результате запишем такое соотношение:

$\sum{riF_i}+\sum{riR_i}+\sum{riФ_i} = 0$

примем следующие обозначения:

$\sum{riF_i}=MOF$

$\sum{riR_i}=MOR$

$\sum{riФ_i}=MOФ$

главные моменты внешних сил, реакции связей и сил инерции соответственно.

В итоге получаем:

$\bar{F^E}+\bar{R}+\bar{Ф}=0$

$\bar{M_0^F}+\bar{M_0^R}+\bar{M_0^Ф}=0$

Эти две формулы являются выражением принципа Даламбера для механической системы. В любой момент времени для движущейся механической системы геометрическая сумма главного вектора реакций связей, внешних сил, и сил инерции получает нулевое значение. Также нулевой будет и геометрическая сумма главных моментов от сил инерции, внешних сил и реакций связей.

Полученные формулы являются дифференциальными уравнениями второго порядка из-за присутствия в каждом из них ускорения в силах инерции (второй производной закона движения точки).

Принцип Даламбера позволяет решать методами статики задачи динамики. Для механической системы можно записывать уравнения движения в виде уравнений равновесия. Из таких уравнений можно определить неизвестные силы, в частности, реакции связей (первая задача динамики).

Если рассматривать систему, которая состоит из нескольких материальных точек, выделяя одну определенную точку с известной массой, то под действием приложенных к ней внешних и внутренних сил она получает некоторое ускорение по отношению к инерциальной системе отсчета. Среди таких сил могут быть как активные силы, так и реакции связи.

Сила инерции точки - это векторная величина, которая равна по модулю произведению массы точки на ее ускорение. Данную величину иногда упоминают как даламберовскую силу инерции, она направлена противоположно ускорению. В этом случае обнаруживается следующее свойство движущейся точки: если в каждый момент времени прибавить силу инерции к фактически действующим на точку силам, то полученная система сил будет уравновешена. Так можно сформулировать принцип Даламбера для одной материальной точки. Данное утверждение полностью соответствует второму закону Ньютона.

Принципы Даламбера для системы

Если повторить все рассуждения для каждой точки в системе, они приводят к следующему выводу, который выражает принцип Даламбера, сформулированный для системы: если в любой момент времени приложить к каждой из точек в системе, помимо фактически действующих внешних и внутренних сил, то данная система будет находиться в равновесии, поэтому к ней можно применять все уравнения, которые используются в статике.

Если применять принцип Даламбера для решения задач динамики, то уравнения движения системы можно составить в форме известных нам уравнений равновесия. Данный принцип значительно упрощает расчеты и делает подход к решению задач единым.

Применение принципа Даламбера

Следует учитывать, что на движущуюся точку в механической системе действуют только внешние и внутренние силы, которые возникают как результат взаимодействия точек между собой, а также с телами, не входящими в данную систему. Точки движутся с определенными ускорениями под действием всех этих сил. Силы инерции не действуют на движущиеся точки, в противном случае они бы двигались без ускорения или были в покое.

Силы инерции вводятся лишь для того, чтобы составить уравнения динамики при помощи более простых и удобных методов статики. Учитывается также, что геометрическая сумма внутренних сил и сумма их моментов равна нулю. Использование уравнений, которые вытекают из принципа Даламбера, делает процесс решения задач проще, так как данные уравнения уже не содержат внутренних сил.

В предыдущих лекциях рассматривались способы решения задач динамики, основанные на законах Ньютона. В теоретической механике разработаны и другие способы решения динамических задач, в основе которых лежат некоторые иные исходные положения, называемые принципами механики.

Важнейшим из принципов механики является принцип Даламбера. С принципом Даламбера тесно связан метод кинетостатики - способ решения задач динамики, в котором динамические уравнения записываются в форме уравнений равновесия. Метод кинетостатики широко применяется в таких общеинженерных дисциплинах, как сопротивление материалов, теория механизмов и машин, в других областях прикладной механики. Принцип Даламбера результативно используется и внутри самой теоретической механики, где с его помощью созданы эффективные способы решения задач динамики.

Принцип Даламбера для материальной точки

Пусть материальная точка массы совершает несвободное движение относительно инерциальной системы координат Oxyz под действием активной силы и реакции связи R (рис. 57).

Определим вектор

численно равный произведению массы точки на ее ускорение и направленный противоположно вектору ускорения. Вектор имеет размерность силы и называется силой инерции (даламберовой) материальной точки.

Принцип Даламбера для материальной точки сводится к следующему утверждению: если к силам, действующим на материальную точку, условно присоединить силу инерции точки, то получим уравновешенную систему сил, т. е.

Вспоминая из статики условие равновесия сходящихся сил, принцип Даламбера можем записать также в следующей форме:

Легко видеть, что принцип Даламбера эквивалентен основному уравнению динамики, и наоборот, из основного уравнения динамики следует принцип Даламбера. Действительно, перенося в последнем равенстве вектор в другую часть равенства и заменяя на , получаем основное уравнение динамики. Наоборот, перенося в основном уравнении динамики член та в одну сторону с силами и используя обозначение , получаем запись принципа Даламбера.

Принцип Даламбера для материальной точки, будучи вполне эквивалентным основному закону динамики, выражает этот закон в совершенно иной форме - в форме уравнения статики. Это дает возможность пользоваться при составлении уравнений динамики методами статики, что и называется методом кинетостатики.

Метод кинетостатики особенно удобен при решении первой задачи динамики.

Пример. Из наивысшей точки гладкого сферического купола радиуса R соскальзывает материальная точка М массы с пренебрежимо малой начальной скоростью (рис. 58). Определить, в каком месте точка сойдет с купола.

Решение. Точка будет двигаться по дуге некоторого меридиана . Пусть в некоторый (текущий) момент радиус ОМ составляет с вертикалью угол . Раскладывая ускорение точки а на касательное ) и нормальное представим силу инерции точки также в виде суммы двух составляющих:

Касательная составляющая силы инерции имеет модуль и направлена противоположно касательному ускорению, нормальная составляющая - модуль и направлена противоположно нормальному ускорению.

Добавляя эти силы к фактически действующим на точку активной силе и реакции купола N, составляем уравнение кинетостатики



Просмотров